369 research outputs found

    Time Varying Compensator Design for Reconfigurable Structures Using Non-Collocated Feedback

    Get PDF
    Analysis and synthesis tools are developed to improved the dynamic performance of reconfigurable nonminimum phase, nonstrictly positive real-time variant systems. A novel Spline Varying Optimal (SVO) controller is developed for the kinematic nonlinear system. There are several advantages to using the SVO controller, in which the spline function approximates the system model, observer, and controller gain. They are: The spline function approximation is simply connected, thus the SVO controller is more continuous than traditional gain scheduled controllers when implemented on a time varying plant; ft is easier for real-time implementations in storage and computational effort; where system identification is required, the spline function requires fewer experiments, namely four experiments; and initial startup estimator transients are eliminated. The SVO compensator was evaluated on a high fidelity simulation of the Shuttle Remote Manipulator System. The SVO controller demonstrated significant improvement over the present arm performance: (1) Damping level was improved by a factor of 3; and (2) Peak joint torque was reduced by a factor of 2 following Shuttle thruster firings

    Control algorithm implementation for a redundant degree of freedom manipulator

    Get PDF
    This project's purpose is to develop and implement control algorithms for a kinematically redundant robotic manipulator. The manipulator is being developed concurrently by Odetics Inc., under internal research and development funding. This SBIR contract supports algorithm conception, development, and simulation, as well as software implementation and integration with the manipulator hardware. The Odetics Dexterous Manipulator is a lightweight, high strength, modular manipulator being developed for space and commercial applications. It has seven fully active degrees of freedom, is electrically powered, and is fully operational in 1 G. The manipulator consists of five self-contained modules. These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly/disassembly for reconfiguration, transport, or servicing. Each joint incorporates a unique drive train design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. The sensing system is also designed to be single fault tolerant. Although the initial prototype is not space qualified, the design is well-suited to meeting space qualification requirements. The control algorithm design approach is to develop a hierarchical system with well defined access and interfaces at each level. The high level endpoint/configuration control algorithm transforms manipulator endpoint position/orientation commands to joint angle commands, providing task space motion. At the same time, the kinematic redundancy is resolved by controlling the configuration (pose) of the manipulator, using several different optimizing criteria. The center level of the hierarchy servos the joints to their commanded trajectories using both linear feedback and model-based nonlinear control techniques. The lowest control level uses sensed joint torque to close torque servo loops, with the goal of improving the manipulator dynamic behavior. The control algorithms are subjected to a dynamic simulation before implementation

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Design and control of a 6-degree-of-freedom precision positioning system

    Get PDF
    This paper presents the design and test of a6-degree-of-freedom (DOF) precision positioning system, which is assembledby two different 3-DOF precision positioning stages each driven by three piezoelectric actuators (PEAs). Based on the precision PEAs and flexure hinge mechanisms, high precision motion is obtained.The design methodology and kinematic characteristics of the6-DOF positioning system areinvestigated. According to an effective kinematic model, the transformation matrices are obtained, which is used to predict the relationship between the output displacement from the system arrangement and the amountof PEAsexpansion. In addition, the static and dynamic characteristics of the 6-DOF system have been evaluated by finite element method (FEM) simulation andexperiments. The design structure provides a high dynamic bandwidth withthe first naturalfrequency of 586.3 Hz.Decoupling control is proposed to solve the existing coupling motion of the 6-DOF system. Meanwhile, in order to compensate for the hysteresis of PEAs, the inverse Bouc-Wen model was applied as a feedforward hysteresis compensator in the feedforward/feedback hybrid control method. Finally, extensive experiments were performed to verify the tracking performance of the developed mechanism

    Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 2

    Get PDF
    The Control/Structures Integration Program, a survey of available software for control of flexible structures, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software are discussed

    Large Space Antenna Systems Technology, 1984

    Get PDF
    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined

    From plain visualisation to vibration sensing: using a camera to control the flexibilities in the ITER remote handling equipment

    Get PDF
    Thermonuclear fusion is expected to play a key role in the energy market during the second half of this century, reaching 20% of the electricity generation by 2100. For many years, fusion scientists and engineers have been developing the various technologies required to build nuclear power stations allowing a sustained fusion reaction. To the maximum possible extent, maintenance operations in fusion reactors are performed manually by qualified workers in full accordance with the "as low as reasonably achievable" (ALARA) principle. However, the option of hands-on maintenance becomes impractical, difficult or simply impossible in many circumstances, such as high biological dose rates. In this case, maintenance tasks will be performed with remote handling (RH) techniques. The International Thermonuclear Experimental Reactor ITER, to be commissioned in southern France around 2025, will be the first fusion experiment producing more power from fusion than energy necessary to heat the plasma. Its main objective is “to demonstrate the scientific and technological feasibility of fusion power for peaceful purposes”. However ITER represents an unequalled challenge in terms of RH system design, since it will be much more demanding and complex than any other remote maintenance system previously designed. The introduction of man-in-the-loop capabilities in the robotic systems designed for ITER maintenance would provide useful assistance during inspection, i.e. by providing the operator the ability and flexibility to locate and examine unplanned targets, or during handling operations, i.e. by making peg-in-hole tasks easier. Unfortunately, most transmission technologies able to withstand the very specific and extreme environmental conditions existing inside a fusion reactor are based on gears, screws, cables and chains, which make the whole system very flexible and subject to vibrations. This effect is further increased as structural parts of the maintenance equipment are generally lightweight and slender structures due to the size and the arduous accessibility to the reactor. Several methodologies aiming at avoiding or limiting the effects of vibrations on RH system performance have been investigated over the past decade. These methods often rely on the use of vibration sensors such as accelerometers. However, reviewing market shows that there is no commercial off-the-shelf (COTS) accelerometer that meets the very specific requirements for vibration sensing in the ITER in-vessel RH equipment (resilience to high total integrated dose, high sensitivity). The customisation and qualification of existing products or investigation of new concepts might be considered. However, these options would inevitably involve high development costs. While an extensive amount of work has been published on the modelling and control of flexible manipulators in the 1980s and 1990s, the possibility to use vision devices to stabilise an oscillating robotic arm has only been considered very recently and this promising solution has not been discussed at length. In parallel, recent developments on machine vision systems in nuclear environment have been very encouraging. Although they do not deal directly with vibration sensing, they open up new prospects in the use of radiation tolerant cameras. This thesis aims to demonstrate that vibration control of remote maintenance equipment operating in harsh environments such as ITER can be achieved without considering any extra sensor besides the embarked rad-hardened cameras that will inevitably be used to provide real-time visual feedback to the operators. In other words it is proposed to consider the radiation-tolerant vision devices as full sensors providing quantitative data that can be processed by the control scheme and not only as plain video feedback providing qualitative information. The work conducted within the present thesis has confirmed that methods based on the tracking of visual features from an unknown environment are effective candidates for the real-time control of vibrations. Oscillations induced at the end effector are estimated by exploiting a simple physical model of the manipulator. Using a camera mounted in an eye-in-hand configuration, this model is adjusted using direct measurement of the tip oscillations with respect to the static environment. The primary contribution of this thesis consists of implementing a markerless tracker to determine the velocity of a tip-mounted camera in an untrimmed environment in order to stabilise an oscillating long-reach robotic arm. In particular, this method implies modifying an existing online interaction matrix estimator to make it self-adjustable and deriving a multimode dynamic model of a flexible rotating beam. An innovative vision-based method using sinusoidal regression to sense low-frequency oscillations is also proposed and tested. Finally, the problem of online estimation of the image capture delay for visual servoing applications with high dynamics is addressed and an original approach based on the concept of cross-correlation is presented and experimentally validated

    The Fifth NASA/DOD Controls-Structures Interaction Technology Conference, part 2

    Get PDF
    This publication is a compilation of the papers presented at the Fifth NASA/DoD Controls-Structures Interaction (CSI) Technology Conference held in Lake Tahoe, Nevada, March 3-5, 1992. The conference, which was jointly sponsored by the NASA Office of Aeronautics and Space Technology and the Department of Defense, was organized by the NASA Langley Research Center. The purpose of this conference was to report to industry, academia, and government agencies on the current status of controls-structures interaction technology. The agenda covered ground testing, integrated design, analysis, flight experiments and concepts
    corecore