1,938 research outputs found

    Compositionality for Quantitative Specifications

    Full text link
    We provide a framework for compositional and iterative design and verification of systems with quantitative information, such as rewards, time or energy. It is based on disjunctive modal transition systems where we allow actions to bear various types of quantitative information. Throughout the design process the actions can be further refined and the information made more precise. We show how to compute the results of standard operations on the systems, including the quotient (residual), which has not been previously considered for quantitative non-deterministic systems. Our quantitative framework has close connections to the modal nu-calculus and is compositional with respect to general notions of distances between systems and the standard operations

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    A Modal Specification Theory for Timing Variability

    Get PDF
    Modal specifications are classical formalisms that can be used to express the functional variability of systems; it is particularly useful for capturing the stepwise refinement of component-based design. However, the extension of such formalisms to real-time systems has not received adequate attention. In this paper, we propose a novel notion of time-parametric modal specifications to describe the timing as well as functional variability of real-time systems.We present a specification theory on modal refinement, property preservation and compositional reasoning. We also develop zone-graph based symbolic methods for the reachability analysis and modal refinement checking. We demonstrate the practical application of our proposed theory and algorithms via a case study of medical device cyber-physical systems

    Foundations for Safety-Critical on-Demand Medical Systems

    Get PDF
    In current medical practice, therapy is delivered in critical care environments (e.g., the ICU) by clinicians who manually coordinate sets of medical devices: The clinicians will monitor patient vital signs and then reconfigure devices (e.g., infusion pumps) as is needed. Unfortunately, the current state of practice is both burdensome on clinicians and error prone. Recently, clinicians have been speculating whether medical devices supporting ``plug & play interoperability\u27\u27 would make it easier to automate current medical workflows and thereby reduce medical errors, reduce costs, and reduce the burden on overworked clinicians. This type of plug & play interoperability would allow clinicians to attach devices to a local network and then run software applications to create a new medical system ``on-demand\u27\u27 which automates clinical workflows by automatically coordinating those devices via the network. Plug & play devices would let the clinicians build new medical systems compositionally. Unfortunately, safety is not considered a compositional property in general. For example, two independently ``safe\u27\u27 devices may interact in unsafe ways. Indeed, even the definition of ``safe\u27\u27 may differ between two device types. In this dissertation we propose a framework and define some conditions that permit reasoning about the safety of plug & play medical systems. The framework includes a logical formalism that permits formal reasoning about the safety of many device combinations at once, as well as a platform that actively prevents unintended timing interactions between devices or applications via a shared resource such as a network or CPU. We describe the various pieces of the framework, report some experimental results, and show how the pieces work together to enable the safety assessment of plug & play medical systems via a two case-studies

    Early timing analysis based on scenario requirements and platform models

    Get PDF
    Distributed, software-intensive systems (e.g., in the automotive sector) must fulfill communication requirements under hard real-time constraints. The requirements have to be documented and validated carefully using a systematic requirements engineering (RE) approach, for example, by applying scenario-based requirements notations. The resources of the execution platforms and their properties (e.g., CPU frequency or bus throughput) induce effects on the timing behavior, which may lead to violations of the real-time requirements. Nowadays, the platform properties and their induced timing effects are verified against the real-time requirements by means of timing analysis techniques mostly implemented in commercial-off-the-shelf tools. However, such timing analyses are conducted in late development phases since they rely on artifacts produced during these phases (e.g., the platform-specific code). In order to enable early timing analyses already during RE, we extend a scenario-based requirements notation with allocation means to platform models and define operational semantics for the purpose of simulation-based, platform-aware timing analyses. We illustrate and evaluate the approach with an automotive software-intensive system

    Contracts for System Design

    Get PDF
    Systems design has become a key challenge and differentiating factor over the last decades for system companies. Aircrafts, trains, cars, plants, distributed telecommunication military or health care systems, and more, involve systems design as a critical step. Complexity has caused system design times and costs to go severely over budget so as to threaten the health of entire industrial sectors. Heuristic methods and standard practices do not seem to scale with complexity so that novel design methods and tools based on a strong theoretical foundation are sorely needed. Model-based design as well as other methodologies such as layered and compositional design have been used recently but a unified intellectual framework with a complete design flow supported by formal tools is still lacking albeit some attempts at this framework such as Platform-based Design have been successfully deployed. Recently an "orthogonal" approach has been proposed that can be applied to all methodologies proposed thus far to provide a rigorous scaffolding for verification, analysis and abstraction/refinement: contractbased design. Several results have been obtained in this domain but a unified treatment of the topic that can help in putting contract-based design in perspective is still missing. This paper intends to provide such treatment where contracts are precisely defined and characterized so that they can be used in design methodologies such as the ones mentioned above with no ambiguity. In addition, the paper provides an important link between interfaces and contracts to show similarities and correspondences. Examples of the use of contracts in design are provided as well as in depth analysis of existing literature.Cet article fait le point sur le concept de contrat pour la conception de systèmes. Les contrats que nous proposons portent, non seulement sur des propriétés de typage de leurs interfaces, mais incluent une description abstraite de comportements. Nous proposons une méta-théorie, ou, si l'on veut, une théorie générique des contrats, qui permet le développement séparé de sous-systèmes. Nous montrons que cette méta-théorie se spécialise en l'une ou l'autre des théories connues

    A Robust Specification Theory for Modal Event-Clock Automata

    Get PDF
    In a series of recent work, we have introduced a general framework for quantitative reasoning in specification theories. The contribution of this paper is to show how this framework can be applied to yield a robust specification theory for timed specifications.Comment: In Proceedings FIT 2012, arXiv:1207.348

    Contracts for Systems Design: Theory

    Get PDF
    Aircrafts, trains, cars, plants, distributed telecommunication military or health care systems,and more, involve systems design as a critical step. Complexity has caused system design times and coststo go severely over budget so as to threaten the health of entire industrial sectors. Heuristic methods andstandard practices do not seem to scale with complexity so that novel design methods and tools based on astrong theoretical foundation are sorely needed. Model-based design as well as other methodologies suchas layered and compositional design have been used recently but a unified intellectual framework with acomplete design flow supported by formal tools is still lacking.Recently an “orthogonal” approach has been proposed that can be applied to all methodologies introducedthus far to provide a rigorous scaffolding for verification, analysis and abstraction/refinement: contractbaseddesign. Several results have been obtained in this domain but a unified treatment of the topic that canhelp in putting contract-based design in perspective is missing. This paper intends to provide such treatmentwhere contracts are precisely defined and characterized so that they can be used in design methodologiessuch as the ones mentioned above with no ambiguity. In addition, the paper provides an important linkbetween interface and contract theories to show similarities and correspondences.This paper is complemented by a companion paper where contract based design is illustrated throughuse cases

    ScenarioTools Real-Time Play-Out for Test Sequence Validation in an Automotive Case Study

    Get PDF
    In many areas, such as automotive, healthcare, or production, we find software-intensive systems with complex real-time requirements. To efficiently ensure the quality of these systems, engineers require automated tools for the validation of the requirements throughout the development. This, however, requires that the requirements are specified in an analyzable way. We propose modeling the specification using Modal Sequence Diagrams (MSDs), which express what a system may, must, or must not do in certain situations. MSDs can be executed via the play-out algorithm to investigate the behavior emerging from the interplay of multiple scenarios; we can also test if traces of the final product satisfy all scenarios. In this paper, we present the first tool supporting the play-out of MSDs with real-time constraints. As a case study, we modeled the requirements on gear shifts in an upcoming standard on vehicle testing and use our tool to validate externally generated gear shift sequences
    • …
    corecore