2,843 research outputs found

    Modal decomposition of linearized open channel flow

    Get PDF
    Open channel flow is traditionally modeled as an hyperbolic system of conservation laws, which is an infinite dimensional system with complex dynamics. We consider in this paper an open channel represented by the Saint-Venant equations linearized around a non uniform steady flow regime. We use a frequency domain approach to fully characterize the open channel flow dynamics. The use of the Laplace transform enables us to derive the distributed transfer matrix, linking the boundary inputs to the state of the system. The poles of the system are then computed analytically, and each transfer function is decomposed in a series of eigenfunctions, where the influence of space and time variables can be decoupled. As a result, we can express the time-domain response of the whole canal pool to boundary inputs in terms of discharges. This study is first done in the uniform case, and finally extended to the non uniform case. The solution is studied and illustrated on two different canal pools

    Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis

    Get PDF
    We consider the frequency domain form of proper orthogonal decomposition (POD) called spectral proper orthogonal decomposition (SPOD). Spectral POD is derived from a space-time POD problem for statistically stationary flows and leads to modes that each oscillate at a single frequency. This form of POD goes back to the original work of Lumley (Stochastic tools in turbulence, Academic Press, 1970), but has been overshadowed by a space-only form of POD since the 1990s. We clarify the relationship between these two forms of POD and show that SPOD modes represent structures that evolve coherently in space and time while space-only POD modes in general do not. We also establish a relationship between SPOD and dynamic mode decomposition (DMD); we show that SPOD modes are in fact optimally averaged DMD modes obtained from an ensemble DMD problem for stationary flows. Accordingly, SPOD modes represent structures that are dynamic in the same sense as DMD modes but also optimally account for the statistical variability of turbulent flows. Finally, we establish a connection between SPOD and resolvent analysis. The key observation is that the resolvent-mode expansion coefficients must be regarded as statistical quantities to ensure convergent approximations of the flow statistics. When the expansion coefficients are uncorrelated, we show that SPOD and resolvent modes are identical. Our theoretical results and the overall utility of SPOD are demonstrated using two example problems: the complex Ginzburg-Landau equation and a turbulent jet

    Nonlinear modes of clarinet-like musical instruments

    Full text link
    The concept of nonlinear modes is applied in order to analyze the behavior of a model of woodwind reed instruments. Using a modal expansion of the impedance of the instrument, and by projecting the equation for the acoustic pressure on the normal modes of the air column, a system of second order ordinary differential equations is obtained. The equations are coupled through the nonlinear relation describing the volume flow of air through the reed channel in response to the pressure difference across the reed. The system is treated using an amplitude-phase formulation for nonlinear modes, where the frequency and damping functions, as well as the invariant manifolds in the phase space, are unknowns to be determined. The formulation gives, without explicit integration of the underlying ordinary differential equation, access to the transient, the limit cycle, its period and stability. The process is illustrated for a model reduced to three normal modes of the air column

    On non-normality and classification of amplification mechanisms in stability and resolvent analysis

    Get PDF
    We seek to quantify non-normality of the most amplified resolvent modes and predict their features based on the characteristics of the base or mean velocity profile. A 2-by-2 model linear Navier-Stokes (LNS) operator illustrates how non-normality from mean shear distributes perturbation energy in different velocity components of the forcing and response modes. The inverse of their inner product, which is unity for a purely normal mechanism, is proposed as a measure to quantify non-normality. In flows where there is downstream spatial dependence of the base/mean, mean flow advection separates the spatial support of forcing and response modes which impacts the inner product. Success of mean stability analysis depends on the normality of amplification. If the amplification is normal, the resolvent operator written in its dyadic representation reveals that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes. If the amplification is non-normal, then resolvent analysis is required to understand the origin of observed flow structures. Eigenspectra and pseudospectra are used to characterize these phenomena. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with normal mechanisms and quantification of non-normality using the inverse inner product of the leading forcing and response modes agrees well with the product of the resolvent norm and distance between the imaginary axis and least stable eigenvalue. In turbulent channel flow, structures result from both normal and non-normal mechanisms. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how non-normality is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures

    Convective instability and transient growth in flow over a backward-facing step

    Get PDF
    Transient energy growths of two- and three-dimensional optimal linear perturbations to two-dimensional flow in a rectangular backward-facing-step geometry with expansion ratio two are presented. Reynolds numbers based on the step height and peak inflow speed are considered in the range 0–500, which is below the value for the onset of three-dimensional asymptotic instability. As is well known, the flow has a strong local convective instability, and the maximum linear transient energy growth values computed here are of order 80×103 at Re = 500. The critical Reynolds number below which there is no growth over any time interval is determined to be Re = 57.7 in the two-dimensional case. The centroidal location of the energy distribution for maximum transient growth is typically downstream of all the stagnation/reattachment points of the steady base flow. Sub-optimal transient modes are also computed and discussed. A direct study of weakly nonlinear effects demonstrates that nonlinearity is stablizing at Re = 500. The optimal three-dimensional disturbances have spanwise wavelength of order ten step heights. Though they have slightly larger growths than two-dimensional cases, they are broadly similar in character. When the inflow of the full nonlinear system is perturbed with white noise, narrowband random velocity perturbations are observed in the downstream channel at locations corresponding to maximum linear transient growth. The centre frequency of this response matches that computed from the streamwise wavelength and mean advection speed of the predicted optimal disturbance. Linkage between the response of the driven flow and the optimal disturbance is further demonstrated by a partition of response energy into velocity components
    corecore