17,480 research outputs found

    Compositionality for Quantitative Specifications

    Full text link
    We provide a framework for compositional and iterative design and verification of systems with quantitative information, such as rewards, time or energy. It is based on disjunctive modal transition systems where we allow actions to bear various types of quantitative information. Throughout the design process the actions can be further refined and the information made more precise. We show how to compute the results of standard operations on the systems, including the quotient (residual), which has not been previously considered for quantitative non-deterministic systems. Our quantitative framework has close connections to the modal nu-calculus and is compositional with respect to general notions of distances between systems and the standard operations

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    A formal approach to validation and verification for knowledge-based control systems

    Get PDF
    As control systems become more complex in response to desires for greater system flexibility, performance and reliability, the promise is held out that artificial intelligence might provide the means for building such systems. An obstacle to the use of symbolic processing constructs in this domain is the need for verification and validation (V and V) of the systems. Techniques currently in use do not seem appropriate for knowledge-based software. An outline of a formal approach to V and V for knowledge-based control systems is presented

    Refinement Modal Logic

    Full text link
    In this paper we present {\em refinement modal logic}. A refinement is like a bisimulation, except that from the three relational requirements only `atoms' and `back' need to be satisfied. Our logic contains a new operator 'all' in addition to the standard modalities 'box' for each agent. The operator 'all' acts as a quantifier over the set of all refinements of a given model. As a variation on a bisimulation quantifier, this refinement operator or refinement quantifier 'all' can be seen as quantifying over a variable not occurring in the formula bound by it. The logic combines the simplicity of multi-agent modal logic with some powers of monadic second-order quantification. We present a sound and complete axiomatization of multi-agent refinement modal logic. We also present an extension of the logic to the modal mu-calculus, and an axiomatization for the single-agent version of this logic. Examples and applications are also discussed: to software verification and design (the set of agents can also be seen as a set of actions), and to dynamic epistemic logic. We further give detailed results on the complexity of satisfiability, and on succinctness

    LCM and MCM: specification of a control system using dynamic logic and process algebra

    Get PDF
    LCM 3.0 is a specification language based on dynamic logic and process algebra, and can be used to specify systems of dynamic objects that communicate synchronously. LCM 3.0 was developed for the specification of object-oriented information systems, but contains sufficient facilities for the specification of control to apply it to the specification of control-intensive systems as well. In this paper, the results of such an application are reported. The paper concludes with a discussion of the need for theorem-proving support and of the extensions that would be needed to be able to specify real-time properties

    Supervisory Control for Modal Specifications of Services

    Get PDF
    International audienceIn the service oriented architecture framework, a modal specification, as defined by Larsen in \cite{Lar89}, formalises how a service should interact with its environment. More precisely, a modal specification determines the events that the server may or must allow at each stage in an interactive session. Therefore, techniques to enforce a modal specification on a system would be useful for practical applications. In this paper, we investigate the adaptation of the supervisory control theory of Ramadge and Wonham to enforce a modal specification (with final states marking the ends of the sessions) on a system modelled by a finite LTS. We prove that there exists at most one most permissive solution to this control problem. We also prove that this solution is regular and we present an algorithm for the effective computation of the corresponding controlle

    On Formal Methods for Collective Adaptive System Engineering. {Scalable Approximated, Spatial} Analysis Techniques. Extended Abstract

    Full text link
    In this extended abstract a view on the role of Formal Methods in System Engineering is briefly presented. Then two examples of useful analysis techniques based on solid mathematical theories are discussed as well as the software tools which have been built for supporting such techniques. The first technique is Scalable Approximated Population DTMC Model-checking. The second one is Spatial Model-checking for Closure Spaces. Both techniques have been developed in the context of the EU funded project QUANTICOL.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200

    Modal Interface Automata

    Full text link
    De Alfaro and Henzinger's Interface Automata (IA) and Nyman et al.'s recent combination IOMTS of IA and Larsen's Modal Transition Systems (MTS) are established frameworks for specifying interfaces of system components. However, neither IA nor IOMTS consider conjunction that is needed in practice when a component shall satisfy multiple interfaces, while Larsen's MTS-conjunction is not closed and Bene\v{s} et al.'s conjunction on disjunctive MTS does not treat internal transitions. In addition, IOMTS-parallel composition exhibits a compositionality defect. This article defines conjunction (and also disjunction) on IA and disjunctive MTS and proves the operators to be 'correct', i.e., the greatest lower bounds (least upper bounds) wrt. IA- and resp. MTS-refinement. As its main contribution, a novel interface theory called Modal Interface Automata (MIA) is introduced: MIA is a rich subset of IOMTS featuring explicit output-must-transitions while input-transitions are always allowed implicitly, is equipped with compositional parallel, conjunction and disjunction operators, and allows a simpler embedding of IA than Nyman's. Thus, it fixes the shortcomings of related work, without restricting designers to deterministic interfaces as Raclet et al.'s modal interface theory does.Comment: 28 page
    • …
    corecore