515 research outputs found

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Recovery operators, paraconsistency and duality

    Get PDF
    There are two foundational, but not fully developed, ideas in paraconsistency, namely, the duality between paraconsistent and intuitionistic paradigms, and the introduction of logical operators that express meta-logical notions in the object language. The aim of this paper is to show how these two ideas can be adequately accomplished by the Logics of Formal Inconsistency (LFIs) and by the Logics of Formal Undeterminedness (LFUs). LFIs recover the validity of the principle of explosion in a paraconsistent scenario, while LFUs recover the validity of the principle of excluded middle in a paracomplete scenario. We introduce definitions of duality between inference rules and connectives that allow comparing rules and connectives that belong to different logics. Two formal systems are studied, the logics mbC and mbD, that display the duality between paraconsistency and paracompleteness as a duality between inference rules added to a common core– in the case studied here, this common core is classical positive propositional logic (CPL + ). The logics mbC and mbD are equipped with recovery operators that restore classical logic for, respectively, consistent and determined propositions. These two logics are then combined obtaining a pair of logics of formal inconsistency and undeterminedness (LFIUs), namely, mbCD and mbCDE. The logic mbCDE exhibits some nice duality properties. Besides, it is simultaneously paraconsistent and paracomplete, and able to recover the principles of excluded middle and explosion at once. The last sections offer an algebraic account for such logics by adapting the swap-structures semantics framework of the LFIs the LFUs. This semantics highlights some subtle aspects of these logics, and allows us to prove decidability by means of finite non-deterministic matrices

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    Proceedings of the 8th Scandinavian Logic Symposium

    Get PDF

    Duality and canonical extensions for stably compact spaces

    Get PDF
    We construct a canonical extension for strong proximity lattices in order to give an algebraic, point-free description of a finitary duality for stably compact spaces. In this setting not only morphisms, but also objects may have distinct pi- and sigma-extensions.Comment: 29 pages, 1 figur
    corecore