111,910 research outputs found

    Complexity of validity for propositional dependence logics

    Full text link
    We study the validity problem for propositional dependence logic, modal dependence logic and extended modal dependence logic. We show that the validity problem for propositional dependence logic is NEXPTIME-complete. In addition, we establish that the corresponding problem for modal dependence logic and extended modal dependence logic is NEXPTIME-hard and in NEXPTIME^NP.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    The Expressive Power of Modal Dependence Logic

    Full text link
    We study the expressive power of various modal logics with team semantics. We show that exactly the properties of teams that are downward closed and closed under team k-bisimulation, for some finite k, are definable in modal logic extended with intuitionistic disjunction. Furthermore, we show that the expressive power of modal logic with intuitionistic disjunction and extended modal dependence logic coincide. Finally we establish that any translation from extended modal dependence logic into modal logic with intuitionistic disjunction increases the size of some formulas exponentially.Comment: 19 page

    The expressive power of modal logic with inclusion atoms

    Get PDF
    Modal inclusion logic is the extension of basic modal logic with inclusion atoms, and its semantics is defined on Kripke models with teams. A team of a Kripke model is just a subset of its domain. In this paper we give a complete characterisation for the expressive power of modal inclusion logic: a class of Kripke models with teams is definable in modal inclusion logic if and only if it is closed under k-bisimulation for some integer k, it is closed under unions, and it has the empty team property. We also prove that the same expressive power can be obtained by adding a single unary nonemptiness operator to modal logic. Furthermore, we establish an exponential lower bound for the size of the translation from modal inclusion logic to modal logic with the nonemptiness operator.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Suhrawardi's Modal Syllogisms

    Get PDF
    Suhrawardi’s logic of the Hikmat al-Ishraq is basically modal. So to understand his modal logic one first has to know the non-modal part upon which his modal logic is built. In my previous paper ‘Suhrawardi on Syllogisms’(3) I discussed the former in detail. The present paper is an exposition of his treatment of modal syllogisms. On the basis of some reasonable existential presuppositions and a number of controversial metaphysical theses, and also by confining his theory to alethic modality, Suhrawardi makes his modal syllogism simple in a way that is without precedent

    Non normal logics: semantic analysis and proof theory

    Full text link
    We introduce proper display calculi for basic monotonic modal logic,the conditional logic CK and a number of their axiomatic extensions. These calculi are sound, complete, conservative and enjoy cut elimination and subformula property. Our proposal applies the multi-type methodology in the design of display calculi, starting from a semantic analysis based on the translation from monotonic modal logic to normal bi-modal logic

    An Observation Concerning Porte’s Rule in Modal Logic

    Get PDF
    It is well known that no consistent normal modal logic contains (as theorems) both ◊A and ◊¬A (for any formula A). Here we observe that this claim can be strengthened to the following: for any formula A, either no consistent normal modal logic contains ◊A, or else no consistent normal modal logic contains ◊¬A

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness
    corecore