14 research outputs found

    Gubs, un langage de description comportementale pour la biologie de synthèse: Conception d'un langage dédié à la conception de fonctions biologiques de synthèse par compilation de spécifications comportementales

    Get PDF
    The field of synthetic biology is looking forward engineering framework for safely designing reliable de-novo biological functions. In this undertaking, Computer-Aided-Design (CAD) environments should play a central role for facilitating the design. Although, CAD environment is widely used to engineer artificial systems the application in synthetic biology is still in its infancy. In this article we address the problem of the design of a high level language which at the core of CAD environment. More specifically the Gubs (Genomic Unified Behavioural Specification) language is a specification language used to describe the observations of the expected behaviour. The compiler appropriately selects components such that the observation of the synthetic biological function resulting to their assembly complies to the programmed behaviour.La biologie de synthèse est un domaine émergent en quête d’outils afin deformaliser et d’automatiser la caractérisation et la conception de systèmes biologiques.Dans ce cadre, nous proposons un langage de spécification comportementale dessystèmes biologiques, ainsi que la conception d’un compilateur traduisant cettespécification en un assemblage de composants biologiques.La première partie sera dédiée à un langage de description comportementalenommé Gubs (Genetic Unified Behaviour Specification) pour la spécification decomposants biologiques en les décrivant comme des systèmes ouverts dynamiques etdiscrets. Gubs est un langage déclaratif dont la syntaxe se fonde sur une descriptiondes comportements par un ensemble de relations causales. Contrairement à un systèmefermé, un programme est toujours une description partielle du comportement dusystème. La sémantique a été conçue afin de prendre en compte la présence d’actionsnon spécifiées qui pourraient potentiellement altérer le comportement des composantsprogrammés en l’exprimant sous forme d’une formule de logique hybride.En seconde partie, nous introduisons un système formel décrivant les principes decompilation d’une spécification en Gubs en un ensemble de composants biologiquessynthétisables. Ce système est implémenté par Ggc, un compilateur permettant desélectionner automatiquement les composants possédant les propriétés adéquatespour qu’une fois assemblés ils simulent le comportement décrit. La compilation d’unespécification Gubs s’appuie sur le principe d’ACI-Unification en utilisant un schémasimilaire au système de preuve automatique afin de sélectionner les composants dontl’assemblage est correct par rapport à la spécification. Dans le cadre d’une unificationavec une base de données de grande taille, l’algorithme d’ACI-Unification bascule surun algorithme évolutionnaire d’optimisation permettant la recherche des composantsen adéquation avec le programme afin d’obtenir une solution.Finalement, cette thèse se conclut sur un ensemble d’optimisations permettantde sélectionner des composants selon des propriétés biologiques afin d’obtenir unesélection plus fine dans le but d’assurer une synthèse des éléments in-silico en systèmesbiologiques viables in-vivo. Nous concluons aussi sur un traitement automatique desbases de données à disposition des chercheurs afin de les traduire en un ensemble decomposants Gubs

    Modélisation algébrique de la dynamique multi-échelles des réseaux de régulation biologique

    Get PDF
    Representing and analyzing large biological regulatory networks arethe two main challenges of the understanding of the livingmachinery. The work we expose here focuses on discrete modeling,usually composed of graphs and sets of parameters, and especiallyon a previously developed framework called Process Hitting, whichallows to give an atomistic representation of some components andtheir combined dynamics. In this thesis, we propose several newframeworks that consist of alternatives to the Process Hitting. Theirhigher expressivity permits to integrate discrete constraints intomodels based on the knowledge of reaction durations orsynchronicity relationships. We also propose a new method toanalyze the dynamics of such models by abstract interpretationwhich allows to answer reachability questions and is well-suited tolarge-scale models (made of hundreds of components, andpotentially more). This method relies on an approximation of thedynamics that avoids the combinatorial explosion usually inherent tosuch analyses, thus answering in in tenths of a second at the priceof being sometimes inconclusive. At last, we discuss the formalbonds between the different formalisms developed in this thesis andthe link with some other widespread discrete modelings. Wepropose several translations from and to these other modelings, inorder to benefit from the high power of modeling and analysis ofthese different frameworks.La représentation et l’analyse des grands réseaux de régulationbiologique sont les deux défis majeurs dans la compréhension desmécanismes du vivant. Le travail exposé dans cette thèse seconcentre sur les modèles discrets, souvent représentés sous laforme de graphes et d’ensembles de paramètres. Il s’inspirenotamment d’un formalisme préalablement développé, appeléFrappes de Processus, qui repose sur une représentation atomiqued’un ensemble de composants et de leur dynamique. Nousproposons dans cette thèse plusieurs représentations alternatives àce formalisme, qui possèdent une plus grande expressivité. Cesreprésentations sont adaptées à l’intégration de contraintesdiscrètes dans les modèles provenant de durées relatives ou derelations de synchronisme entre certaines réactions. Nousproposons par ailleurs une méthode d’analyse de la dynamique parinterprétation abstraite qui permet de répondre à des questionsd’atteignabilité. Cette méthode est spécifiquement adaptée à l’étudedes modèles de grande taille, pouvant contenir plusieurs centainesde composants, et potentiellement davantage. Elle repose en effetsur une approximation de la dynamique qui évite ainsi l’explosioncombinatoire inhérente à ce type d’analyse, permettant de répondreen quelques dixièmes de secondes au prix d’être parfois nonconclusive. Enfin, nous traçons des liens formels entre les différentsformalismes développés dans cette thèse, ainsi qu’avec plusieursautres modélisations discrètes répandues. Nous permettons ainsi àun modèle de jouir des capacités de représentation et d’analyse deplusieurs formalismes à la fois

    Modélisation algébrique de la dynamique multi-échelles des réseaux de régulation biologique

    Get PDF
    Representing and analyzing large biological regulatory networks arethe two main challenges of the understanding of the livingmachinery. The work we expose here focuses on discrete modeling,usually composed of graphs and sets of parameters, and especiallyon a previously developed framework called Process Hitting, whichallows to give an atomistic representation of some components andtheir combined dynamics. In this thesis, we propose several newframeworks that consist of alternatives to the Process Hitting. Theirhigher expressivity permits to integrate discrete constraints intomodels based on the knowledge of reaction durations orsynchronicity relationships. We also propose a new method toanalyze the dynamics of such models by abstract interpretationwhich allows to answer reachability questions and is well-suited tolarge-scale models (made of hundreds of components, andpotentially more). This method relies on an approximation of thedynamics that avoids the combinatorial explosion usually inherent tosuch analyses, thus answering in in tenths of a second at the priceof being sometimes inconclusive. At last, we discuss the formalbonds between the different formalisms developed in this thesis andthe link with some other widespread discrete modelings. Wepropose several translations from and to these other modelings, inorder to benefit from the high power of modeling and analysis ofthese different frameworks.La représentation et l’analyse des grands réseaux de régulationbiologique sont les deux défis majeurs dans la compréhension desmécanismes du vivant. Le travail exposé dans cette thèse seconcentre sur les modèles discrets, souvent représentés sous laforme de graphes et d’ensembles de paramètres. Il s’inspirenotamment d’un formalisme préalablement développé, appeléFrappes de Processus, qui repose sur une représentation atomiqued’un ensemble de composants et de leur dynamique. Nousproposons dans cette thèse plusieurs représentations alternatives àce formalisme, qui possèdent une plus grande expressivité. Cesreprésentations sont adaptées à l’intégration de contraintesdiscrètes dans les modèles provenant de durées relatives ou derelations de synchronisme entre certaines réactions. Nousproposons par ailleurs une méthode d’analyse de la dynamique parinterprétation abstraite qui permet de répondre à des questionsd’atteignabilité. Cette méthode est spécifiquement adaptée à l’étudedes modèles de grande taille, pouvant contenir plusieurs centainesde composants, et potentiellement davantage. Elle repose en effetsur une approximation de la dynamique qui évite ainsi l’explosioncombinatoire inhérente à ce type d’analyse, permettant de répondreen quelques dixièmes de secondes au prix d’être parfois nonconclusive. Enfin, nous traçons des liens formels entre les différentsformalismes développés dans cette thèse, ainsi qu’avec plusieursautres modélisations discrètes répandues. Nous permettons ainsi àun modèle de jouir des capacités de représentation et d’analyse deplusieurs formalismes à la fois

    Méthodes qualitatives pour la construction et l'analyse des réseaux moléculaires SBGN

    Get PDF
    Two fundamental tasks of Systems Biology are the construction of molecular networks from experimental data, and their analysis with a view to discovering their emergent properties. With the increase of available experimental data, these two tasks can no longer be realized by hand. Based on this observation, numerous bioinformatics methods aiming at the automation of these two task have been developped.In parallel, standards aiming at defining and organizing terms of systems biology, or representing networks and mathematical models, have been developped. Among these standards, the Standard Biology Graphical Notation is composed of three languages that allow the representation of molecular networks. The two main SBGN languages are SBGN-PD for the representation of reaction networks, and SBGN-AF for the representation of influence graphs. The SBGN notation not only standardizes the representation of networks, but also gives the concepts of systems biology that are most often used to express knowledge of the field.Our work takes its root in this general background. We have developped a number of methods to construct molecular networks and analyze their dynamics. All the methods that we propose are based on qualitative formalisms, such as logics or automata networks. These formalisms have solid theoretical bases and can be used by numerous pieces of software. All our methods also rely on the biological concepts given by the SBGN standard, and can therefore be blended in the same theoretical framework.First, we introduce two sets of predicates that allow to translate any SBGN-PD or SBGN-AF network into a set of ground atoms. Then, we show how these sets of predicates can be used to reason on networks, by proposing a transformation method of SBGN-PD signaling networks into SBGN-AF influence graphs.Second, we present a first-order logic based method to construct signaling networks from experimental results. This method formalizes and automatizes biologists' reasoning using explicit reasoning rules.On the contrary to existing methods, it allows to take into account numerous types of experimental results while reconstructing precise molecular mecanisms.Third, we show a new method to compute the finite traces and attractor points of Boolean networks that model SBGN-AF networks and that are parameterized using general principles.Finally, we introduce two new qualitative semantics for the computation of the dynamics of SBGN-PD reaction networks. These semantics are expressed using automata networks. The first semantics extends the classical Boolean semantics by taking into account inhibitions. As to the second one, it relies on the concept of story which introduces a new point of view on reaction networks. Indeed, it allows to model different physical states of the same molecular entity using a unique variable.All the methods that we have developped show how qualitative formalisms can be used to reason on the relations represented by molecular networks in order to discorver new knowledge in systems biology.La construction des réseaux moléculaires à partir de résultats expérimentaux, ainsi que leur analyse en vue d'en exhiber des propriétés émergentes, sont deux tâches fondamentales de la biologie des systèmes. Avec l'augmentation du nombre de données expérimentales, elles ne peuvent plus être réalisées manuellement. Partant de ce constat, un certain nombre de méthodes bioinformatiques visant à les automatiser ont été développées.En parallèle du développement des méthodes, un certain nombre de standards ont vu le jour. Parmi ceux-ci, la Standard Biology Graphical Notation (SBGN) se compose de trois langages permettant la représentation des réseaux moléculaires.Les deux langages SBGN les plus couramment utilisés sont SBGN-PD pour la représentation des réseaux de réactions, et SBGN-AF pour celle des graphes d'influences. La notation SBGN, en plus de standardiser la représentation des réseaux, donne l'ensemble des concepts de la biologie des systèmes qui sont le plus souvent utilisés pour exprimer les connaissances du domaine.C'est dans ce cadre général que se placent l'ensemble de nos travaux. Nous avons développé un ensemble de méthodes pour la construction des réseaux moléculaires et l'analyse de leur dynamique. L'ensemble des méthodes que nous proposons reposent sur des formalismes qualitatifs, tels que la logique ou les réseaux d'automates. Ces formalismes on non seulement des bases théoriques solides, mais peuvent aussi être utilisés par de nombreux logiciels.L'ensemble de nos méthodes reposent également sur les concepts biologiques fournis par le standard SBGN, et peuvent ainsi être intégrées dans un même cadre théorique.Nous introduisons d'abord deux ensembles de prédicats qui permettent de traduire n'importe quel réseau SBGN-PD ou SBGN-AF sous la forme d'atomes instanciés. Nous montrons ensuite comment ces deux ensembles peuvent être utilisés pour raisonner automatiquement sur des réseaux moléculaires, en proposant une méthode de transformation automatique des réseaux de signalisation SBGN-PD en graphes d'influences SBGN-AF.Nous présentons ensuite une méthode de construction des réseaux de signalisation à partir de résultats expérimentaux, basée sur la logique du premier ordre. Cette méthode formalise et automatise le raisonnement réalisé par les biologistes à l'aide de règles de raisonnement explicites. Contrairement aux méthodes développées jusqu'à maintenant, celle que nous présentons prend en compte un grand nombre de types d'expériences, tout en permettant la reconstruction de mécanismes moléculaires précis.Puis nous montrons une nouvelle méthode pour le calcul des traces finies et des points attracteurs de réseaux Booléens modélisant des réseaux SBGN-AF et paramétrés à l'aide de principes généraux. Notre méthode repose sur l'utilisation de programmes logiques normaux du premier ordre, qui formalisent ces principes généraux.Enfin, nous proposons deux nouvelles sémantiques qualitatives pour le calcul de la dynamique des réseaux de réactions SBGN-PD, exprimées à l'aide de réseaux d'automates. La première de ces sémantiques étend la sémantique Booléenne des réseaux de réactions en prenant en compte les inhibitions. Quant à la deuxième, elle introduit le concept d'histoire (story) qui offre un nouveau point de vue sur les réseaux de réactions, en permettant de modéliser différents états physiques d'une même entité moléculaire par une seule variable.L'ensemble des méthodes que nous avons développées montrent comment les formalismes qualitatifs, et en particulier la logique, peuvent être utilisés pour raisonner à partir des relations représentées par les réseaux moléculaires, afin de découvrir de nouvelles connaissances en biologie des systèmes

    Complétion combinatoire pour la reconstruction de réseaux métaboliques, et application au modèle des algues brunes Ectocarpus siliculosus

    Get PDF
    In this thesis we focused on the development of a comprehensive approach to reconstruct metabolic networks applied to unconventional biological species for which we have little information. Traditionally, this reconstruction is based on three points : the creation of a metabolic draft from a genome, the completion of this draft and the verification of the results. We have been particularly interested in the hard combinatorial optimization problem represented by the gap-filling step. We used Answer Set Programming (or ASP) to solve this combinatorial problem. Changes to an existing method allowed us to improve both the computational time and the quality of modeling. This entire process of metabolic network reconstruction was applied to the model of brown algae, Ectocarpus siliculosus, allowing us to reconstruct the first metabolic network of a brown macro-algae. The reconstruction of this network allowed us to improve our understanding of the metabolism of this species and to improve annotation of its genome.Durant cette thèse nous nous sommes attachés au développement d'une méthode globale de création de réseaux métaboliques chez des espèces biologiques non classiques pour lesquelles nous possédons peu d'informations. Classiquement cette reconstruction s'articule en trois points : la création d'une ébauche métabolique à partir d'un génome, la complétion du réseau et la vérification du résultat obtenu. Nous nous sommes particulièrement intéressés au problème d'optimisation combinatoire difficile que représente l'étape de complétion du réseau, en utilisant un paradigme de programmation par contraintes pour le résoudre : la programmation par ensemble réponse (ou ASP). Les modifications apportées à une méthode préexistante nous ont permis d'améliorer à la fois le temps de calcul pour résoudre ce problème combinatoire et la qualité de la modélisation. L'ensemble de ce processus de reconstruction de réseau métabolique a été appliqué au modèle des algues brunes, Ectocarpus siliculosus, nous permettant ainsi de reconstruire le premier réseau métabolique chez une macro-algue brune. La reconstruction de ce réseau nous a permis d'améliorer notre compréhension du métabolisme de cette espèce et d'améliorer l'annotation de son génome

    Élaboration d'un modèle spatialisé pour favoriser le contrôle biologique de ravageurs de cultures par gestion du paysage agricole

    Get PDF
    La gestion agroécologique durable des paysages agricoles constitue un très fort enjeu social, écologique et économique. Favoriser les différents services écosystémiques que fournissent ces systèmes complexes, caractérisés par une forte variabilité spatio-temporelle liée aux activités anthropiques, est désormais crucial. Le travail développé dans cette thèse s’est focalisé sur les services de régulation des populations de ravageurs, en développant des modèles spatialisés destinés à identifier les interactions entre paysage et populations dans l’optique d’une gestion intégrée du paysage agricole. L’approche conceptuelle utilisée s’est appuyée sur une réflexion sur les choix de niveaux d’organisation et d’échelles spatio-temporelles pertinentes qui a conduit au développement de deux modèles imbriqués : un simulateur de paysages agricoles (ATLAS) reproduisant la variabilité spatio-temporelle des habitats et un automate cellulaire décrivant les dynamiques pluriannuelles d’un puceron des céréales : Rhopalosiphum padi. Une analyse statistique des résultats a permis d’identifier l’effet des différents paramètres du paysage (composition et climat) sur les densités de pucerons à différentes échelles spatiales au cours des saisons. Ont également été évalués les effets potentiels de différents scénarios de gestion plausibles au sein du paysage agricole étudié. Parmi nos résultats, nous identifions que le remplacement du maïs par le sorgho dans le sud-ouest de la France pourrait conduire à une augmentation des densités de R.padi au sein du paysage au printemps, période particulièrement sensible aux infestations. Nous replaçons ce travail dans le cadre plus large de la favorisation des services écosystémiques et apportons des premiers éléments de réflexion pour une gestion durable du paysage agricole

    Assessing load transfer mechanism in CMC-supported embankments adopting Timoshenko beam theory

    Full text link
    © The authors and ICE Publishing: All rights reserved, 2015. Controlled modulus columns (CMC) supported embankments are increasingly being used for construction of major highway embankments on expansive soils particularly near waterways or coastal regions. CMC is a faster, sustainable and economical ground improvement technology that stiffens the poor soil and transmits the load from the traffic to a lower bearing stratum. The key influencing elements of the load transfer mechanism include embankment fill, load transfer platform (LTP), CMC and the underlying soils. Use of LTP enhances the load distribution mechanism in the CMC improved soft ground and minimises the post construction settlement of the ground. In this paper, reinforced Timoshenko beam theory is introduced to simulate the LTP with one layer of geosynthetics resting on CMC improved soft soil. A parametric study is conducted to investigate the importance of the height of the embankment on the maximum settlement of the LTP, tension developed in the geosynthetics and stress concentration ratio (the ratio of the stresses acting on CMC and soft soils) for the CMC supported embankments. Special attention is given to the stiffness of soft soil and shear stiffness of the geosynthetic layer. It has been observed that height of the embankment, the stiffness of the soft soil and the shear stiffness of the geosynthetics significantly influence the maximum settlement of the LTP and the stress concentration ratio

    Dynamique de la réponse physiologique d'Escherichia coli à des perturbations maîtrisées de son environnement (vers le développement de nouveaux outils de changement d'échelle)

    Get PDF
    Les bioréacteurs de grandes dimensions, en raison de phénomènes de transfert limitant, sont le siège d hétérogénéités se traduisant par des gradients locaux de concentration et température. Les microorganismes circulant au sein de ces bioréacteurs subissent donc des fluctuations environnementales qui peuvent affecter leur comportement aux niveaux métaboliques et/ou moléculaires. La réponse microbienne est fonction de la nature, de l intensité, de la fréquence et de la durée de la perturbation. L objectif de ce travail est l étude quantitative de l impact de l intensité, la fréquence et l amplitude d un stress nutritionnel sur le comportement dynamique d Escherichia coli, à savoir des ajouts pulsés de glucose lors de cultures continues en régime permanent. Un effort particulier est consacré au développement et à la validation des outils expérimentaux indispensables pour une caractérisation rigoureuse des dynamiques de réponses transitoires sur des échelles de temps allant de secondes à quelques minutes. Pour permettre le suivi in situ et en temps réel des changements métaboliques et moléculaires, une souche bioluminescente est mise en œuvre. Les réponses transitoires sont caractérisées par les vitesses spécifiques, les rendements, les profils d induction transcriptionnelle, les temps caractéristiques. Selon les différents scenarii réalisés, l ajustement du métabolisme face aux hétérogénéités de substrat est quantifié selon des échelles de temps aux niveaux macroscopiques et/ou moléculaires ; ces résultats originaux contribuent ainsi à l implémentation des connaissances sur les interactions dynamiques entre les phénomènes biologiques et les phénomènes physiques ; l enjeu réside à terme en l amélioration des processus d optimisation et d extrapolation des bioprocédés par l identification et la quantification des dynamiques des phénomènes limitantsIneffective mixing entailing heterogeneity issues within industrial bioreactors have been reported to affect microbial metabolisms at cellular and/or molecular levels. Substrate gradients inside large-scale bioreactors are common environmental fluctuations that microorganisms would have to encouter along with the bioprocess. Depending on intensity, frequency and duration of those fluctuations, microorganisms may respond in a different manner. The objective of this work is to study the impact of intensity, frequency and amplitude of glucose perturbations on the dynamics of Escherichia coli responses. An E. coli bioluminescent strain is used for in situ and real-time monitoring of both metabolic and transcriptional changes. For this purpose, short-term glucose excess was simulated, using pulse-based experiments into glucose-limited chemostat cultures. In addition, an important effort is devoted to the development and validation of technical and mathematical tools in order to acquire quantitative and kinetic data on time scales from seconds to minutes. The transient responses are characterized, using specific rates, yields, transcriptional induction profiles and characteristic response times, and are compared in the different defined perturbation scenarios. The results reflected the fact that short-term heterogeneities of substrate affect both cell metabolism and regulation at macroscopic and/or molecular levels. Quantitative understandings of the dynamics during transient responses to environmental perturbations can thus shed light on the bioprocess optimizationTOULOUSE-INSA-Bib. electronique (315559905) / SudocSudocFranceF

    Dynamique de la réponse physiologique d’Escherichia coli à des perturbations maîtrisées de son environnement : vers le développement de nouveaux outils de changement d’échelle

    Get PDF
    Les bioréacteurs de grandes dimensions, en raison de phénomènes de transfert limitant, sont le siège d’hétérogénéités se traduisant par des gradients locaux de concentration et température. Les microorganismes circulant au sein de ces bioréacteurs subissent donc des fluctuations environnementales qui peuvent affecter leur comportement aux niveaux métaboliques et/ou moléculaires. La réponse microbienne est fonction de la nature, de l’intensité, de la fréquence et de la durée de la perturbation. L’objectif de ce travail est l’étude quantitative de l’impact de l’intensité, la fréquence et l’amplitude d’un stress nutritionnel sur le comportement dynamique d’Escherichia coli, à savoir des ajouts pulsés de glucose lors de cultures continues en régime permanent. Un effort particulier est consacré au développement et à la validation des outils expérimentaux indispensables pour une caractérisation rigoureuse des dynamiques de réponses transitoires sur des échelles de temps allant de secondes à quelques minutes. Pour permettre le suivi in situ et en temps réel des changements métaboliques et moléculaires, une souche bioluminescente est mise en œuvre. Les réponses transitoires sont caractérisées par les vitesses spécifiques, les rendements, les profils d’induction transcriptionnelle, les temps caractéristiques. Selon les différents scenarii réalisés, l’ajustement du métabolisme face aux hétérogénéités de substrat est quantifié selon des échelles de temps aux niveaux macroscopiques et/ou moléculaires ; ces résultats originaux contribuent ainsi à l’implémentation des connaissances sur les interactions dynamiques entre les phénomènes biologiques et les phénomènes physiques ; l’enjeu réside à terme en l’amélioration des processus d’optimisation et d’extrapolation des bioprocédés par l’identification et la quantification des dynamiques des phénomènes limitants.---------------------------------------------------------------------------------------------------------------------------------------------------------Ineffective mixing entailing heterogeneity issues within industrial bioreactors have been reported to affect microbial metabolisms at cellular and/or molecular levels. Substrate gradients inside large-scale bioreactors are common environmental fluctuations that microorganisms would have to encouter along with the bioprocess. Depending on intensity, frequency and duration of those fluctuations, microorganisms may respond in a different manner. The objective of this work is to study the impact of intensity, frequency and amplitude of glucose perturbations on the dynamics of Escherichia coli responses. An E. coli bioluminescent strain is used for in situ and real-time monitoring of both metabolic and transcriptional changes. For this purpose, short-term glucose excess was simulated, using pulse-based experiments into glucose-limited chemostat cultures. In addition, an important effort is devoted to the development and validation of technical and mathematical tools in order to acquire quantitative and kinetic data on time scales from seconds to minutes. The transient responses are characterized, using specific rates, yields, transcriptional induction profiles and characteristic response times, and are compared in the different defined perturbation scenarios. The results reflected the fact that short-term heterogeneities of substrate affect both cell metabolism and regulation at macroscopic and/or molecular levels. Quantitative understandings of the dynamics during transient responses to environmental perturbations can thus shed light on the bioprocess optimization

    RIODD 2016 « Energie, environnement et mutations sociales »

    Get PDF
    International audienceLe RIODD a tenu son 11ème congrès annuel du mercredi 6 au vendredi 8 juillet 2016 à St-Etienne. Il s'est déroulé à l'Ecole des Mines de Saint-Étienne. L’organisation de ce 11ème congrès annuel du RIODD était portée par l’Institut Henri Fayol de l’Ecole des Mines de St-Etienne. Cette manifestation scientifique à caractère pluridisciplinaire et de dimension internationale s’est inscrite dans le cadre du Bicentenaire de l’Ecole des Mines de St-Etienne en 2016
    corecore