8,126 research outputs found

    FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Get PDF
    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms

    Energy Efficient Clustering and Routing in Mobile Wireless Sensor Network

    Get PDF
    A critical need in Mobile Wireless Sensor Network (MWSN) is to achieve energy efficiency during routing as the sensor nodes have scarce energy resource. The nodes' mobility in MWSN poses a challenge to design an energy efficient routing protocol. Clustering helps to achieve energy efficiency by reducing the organization complexity overhead of the network which is proportional to the number of nodes in the network. This paper proposes a novel hybrid multipath routing algorithm with an efficient clustering technique. A node is selected as cluster head if it has high surplus energy, better transmission range and least mobility. The Energy Aware (EA) selection mechanism and the Maximal Nodal Surplus Energy estimation technique incorporated in this algorithm improves the energy performance during routing. Simulation results can show that the proposed clustering and routing algorithm can scale well in dynamic and energy deficient mobile sensor network.Comment: 9 pages, 4 figure

    Mengenal pasti masalah pemahaman dan hubungannya dengan latar belakang matematik, gaya pembelajaran, motivasi dan minat pelajar terhadap bab pengawalan kos makanan di Sekolah Menengah Teknik (ert) Rembau: satu kajian kes.

    Get PDF
    Kajian ini dijalankan untuk mengkaji hubungan korelasi antara latar belakang Matematik, gaya pembelajaran, motivasi dan minat dengan pemahaman pelajar terhadap bab tersebut. Responden adalah seramai 30 orang iaitu terdiri daripada pelajar tingkatan lima kursus Katering, Sekolah Menengah Teknik (ERT) Rembau, Negeri Sembilan. Instrumen kajian adalah soal selidik dan semua data dianalisis menggunakan program SPSS versi 10.0 untuk mendapatkan nilai min dan nilai korelasi bagi memenuhi objektif yang telah ditetapkan. Hasil kajian ini menunjukkan bahawa hubungan korelasi antara gaya pembelajaran pelajar terhadap pemahaman pelajar adalah kuat. Manakala hubungan korelasi antara latar belakang Matematik, motivasi dan minat terhadap pemahaman pelajar adalah sederhana. Nilai tahap min bagi masalah pemahaman pelajar, latar belakang Matematik, gaya pembelajaran, motivasi dan minat terhadap bab Pengawalan Kos Makanan adalah sederhana. Kajian ini mencadangkan penghasilan satu Modul Pembelajaran Kendiri bagi bab Pengawalan Kos Makanan untuk membantu pelajar kursus Katering dalam proses pembelajaran mereka

    Improved Fair-Zone technique using Mobility Prediction in WSN

    Full text link
    The self-organizational ability of ad-hoc Wireless Sensor Networks (WSNs) has led them to be the most popular choice in ubiquitous computing. Clustering sensor nodes organizing them hierarchically have proven to be an effective method to provide better data aggregation and scalability for the sensor network while conserving limited energy. It has some limitation in energy and mobility of nodes. In this paper we propose a mobility prediction technique which tries overcoming above mentioned problems and improves the life time of the network. The technique used here is Exponential Moving Average for online updates of nodal contact probability in cluster based network.Comment: 10 pages, 7 figures, Published in International Journal Of Advanced Smart Sensor Network Systems (IJASSN

    Distributed Service Discovery for Heterogeneous Wireless Sensor Networks

    Get PDF
    Service discovery in heterogeneous Wireless Sensor Networks is a challenging research objective, due to the inherent limitations of sensor nodes and their extensive and dense deployment. The protocols proposed for ad hoc networks are too heavy for sensor environments. This paper presents a resourceaware solution for the service discovery problem, which exploits the heterogeneous nature of the sensor network and alleviates the high-density problem from the flood-based approaches. The idea is to organize nodes into clusters, based on the available resources and the dynamics of nodes. The clusterhead nodes act as a distributed directory of service registrations. Service discovery messages are exchanged among the nodes in the distributed directory. The simulation results show the performance of the service discovery protocol in heterogeneous dense environments
    • ā€¦
    corecore