1,257 research outputs found

    Mobility-aware Scheduler in CoMP Systems

    Get PDF
    International audienceThe main weakness of coordination techniques in LTE-Advanced networks is the extra resource consumption incurred by the joint transmission from several base stations. In this paper, we propose a new scheduling policy that performs coordination primarily for users staying at the cell edge, without mobility. Other cell-edge users are likely to move and to be served in better radio conditions where cell coordination is not required. We compare the performance of this algorithm to other usual scheduling policies in the presence of elastic traffic through the analysis of flow-level traffic models

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS

    Get PDF
    Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid performance growth of general purpose processors naturally raise the interest in resource multiplexing. The concept of resource sharing and management between virtualized instances is not new and extensively used in data centers. We adopt some of the resource management techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior of the system in order to identify features which are particularly relevant to mobile environment. Subsequently, we introduce our own resource management algorithm specifically targeted to address some of the peculiarities identified by experimental results

    Packet Scheduling Algorithms in LTE/LTE-A cellular Networks: Multi-agent Q-learning Approach

    Get PDF
    Spectrum utilization is vital for mobile operators. It ensures an efficient use of spectrum bands, especially when obtaining their license is highly expensive. Long Term Evolution (LTE), and LTE-Advanced (LTE-A) spectrum bands license were auctioned by the Federal Communication Commission (FCC) to mobile operators with hundreds of millions of dollars. In the first part of this dissertation, we study, analyze, and compare the QoS performance of QoS-aware/Channel-aware packet scheduling algorithms while using CA over LTE, and LTE-A heterogeneous cellular networks. This included a detailed study of the LTE/LTE-A cellular network and its features, and the modification of an open source LTE simulator in order to perform these QoS performance tests. In the second part of this dissertation, we aim to solve spectrum underutilization by proposing, implementing, and testing two novel multi-agent Q-learning-based packet scheduling algorithms for LTE cellular network. The Collaborative Competitive scheduling algorithm, and the Competitive Competitive scheduling algorithm. These algorithms schedule licensed users over the available radio resources and un-licensed users over spectrum holes. In conclusion, our results show that the spectrum band could be utilized by deploying efficient packet scheduling algorithms for licensed users, and can be further utilized by allowing unlicensed users to be scheduled on spectrum holes whenever they occur

    Anticipatory Buffer Control and Quality Selection for Wireless Video Streaming

    Full text link
    Video streaming is in high demand by mobile users, as recent studies indicate. In cellular networks, however, the unreliable wireless channel leads to two major problems. Poor channel states degrade video quality and interrupt the playback when a user cannot sufficiently fill its local playout buffer: buffer underruns occur. In contrast to that, good channel conditions cause common greedy buffering schemes to pile up very long buffers. Such over-buffering wastes expensive wireless channel capacity. To keep buffering in balance, we employ a novel approach. Assuming that we can predict data rates, we plan the quality and download time of the video segments ahead. This anticipatory scheduling avoids buffer underruns by downloading a large number of segments before a channel outage occurs, without wasting wireless capacity by excessive buffering. We formalize this approach as an optimization problem and derive practical heuristics for segmented video streaming protocols (e.g., HLS or MPEG DASH). Simulation results and testbed measurements show that our solution essentially eliminates playback interruptions without significantly decreasing video quality

    Exponential MLWDF (EXP-MLWDF) Downlink Scheduling Algorithm Evaluated in LTE for High Mobility and Dense Area Scenario

    Get PDF
    Nowadays, with the advent of smartphones, most of people started to make voice and video conference calls continuously even in a high mobility scenario, the bandwidth requirements have increased considerably, which can cause network congestion phenomena. To avoid network congestion problems and to support high mobility scenario, 3GPP has developed a new cellular standard based packet switching, termed LTE (Long Term Evolution). The purpose of this paper is to evaluate the performance of the new proposed algorithm, named Exponential Modified Largest Weighted Delay First ‘EXP-MLWDF’, for high mobility scenario and with the presence of a large number of active users, in comparison with the well-known algorithms such as a proportional fair algorithm (PF), Exponential Proportional Fairness (EXP/PF), Logarithm Rule (LOG-Rule), Exponential Rule (EXP-Rule) and Modified Largest Weighted Delay First (MLWDF). The performance evaluation is conducted in terms of system throughput, delay and PLR. Finally, it will be concluded that the proposed scheduler satisfies the quality of service (QoS) requirements of the real-time traffic in terms of packet loss ratio (PLR), average throughput and packet delay. Because of the traffic evolution, some key issues related to scheduling strategies that will be considered in the future requirements are discussed in this article
    • 

    corecore