20,349 research outputs found

    Performance evaluation of a new end-to-end traffic-aware routing in MANETs

    Get PDF
    There has been a lot of research effort on developing reactive routing algorithms for mobile ad hoc networks (MANETs) over the past few years. Most of these algorithms consider finding the shortest path from source to destination in building a route. However, this can lead to some network nodes being more overloaded than the others. In MANETs resources, such as node power and channel bandwidth are often at a premium and, therefore, it is important to optimise their use as much as possible. Consequently, a traffic-aware technique to distribute the load is very desirable in order to make good utilisation of nodes' resources. Therefore a number of end-to-end traffic aware techniques have been proposed for reactive routing protocols to deal with this challenging issue. In this paper we contribute to this research effort by proposing a new traffic aware technique that can overcome the limitations of the existing methods. Results from an extensive comparative evaluation show that the new technique has superior performance over similar existing end-to-end techniques in terms of the achieved throughput, end-to-end delay and routing overhead

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Energy Efficient Clustering and Routing in Mobile Wireless Sensor Network

    Get PDF
    A critical need in Mobile Wireless Sensor Network (MWSN) is to achieve energy efficiency during routing as the sensor nodes have scarce energy resource. The nodes' mobility in MWSN poses a challenge to design an energy efficient routing protocol. Clustering helps to achieve energy efficiency by reducing the organization complexity overhead of the network which is proportional to the number of nodes in the network. This paper proposes a novel hybrid multipath routing algorithm with an efficient clustering technique. A node is selected as cluster head if it has high surplus energy, better transmission range and least mobility. The Energy Aware (EA) selection mechanism and the Maximal Nodal Surplus Energy estimation technique incorporated in this algorithm improves the energy performance during routing. Simulation results can show that the proposed clustering and routing algorithm can scale well in dynamic and energy deficient mobile sensor network.Comment: 9 pages, 4 figure

    Performance study of end-to-end traffic-aware routing

    Get PDF
    There has been a lot research effort on developing reactive routing algorithms for mobile ad hoc networks (MANETs) over the past few years. Most of these algorithms consider finding the shortest path from source to destination in building a route. However, this can lead to some network nodes being more overloaded than the others. In MANETs resources, such as node power and channel bandwidth are often at a premium and, therefore, it is important to optimise their use as much as possible. Consequently, a traffic-aware technique to distribute the load is very desirable in order to make good utilisation of nodes' resources. A number of traffic aware techniques have recently been proposed and can be classified into two categories: end-to-end and on-the-spot. The performance merits of the existing end-to-end traffic aware techniques have been analysed and compared against traditional routing algorithms. There has also been a performance comparison among the existing on-the-spot techniques. However, there has so far been no similar study that evaluates and compares the relative performance merits of end-to-end techniques. In this paper, we describe an extensive performance evaluation of two end-to-end techniques, based on degree of nodal activity and traffic density, using measures based on throughput, end-to-end delay and routing overhead

    QoS routing in ad-hoc networks using GA and multi-objective optimization

    Get PDF
    Much work has been done on routing in Ad-hoc networks, but the proposed routing solutions only deal with the best effort data traffic. Connections with Quality of Service (QoS) requirements, such as voice channels with delay and bandwidth constraints, are not supported. The QoS routing has been receiving increasingly intensive attention, but searching for the shortest path with many metrics is an NP-complete problem. For this reason, approximated solutions and heuristic algorithms should be developed for multi-path constraints QoS routing. Also, the routing methods should be adaptive, flexible, and intelligent. In this paper, we use Genetic Algorithms (GAs) and multi-objective optimization for QoS routing in Ad-hoc Networks. In order to reduce the search space of GA, we implemented a search space reduction algorithm, which reduces the search space for GAMAN (GA-based routing algorithm for Mobile Ad-hoc Networks) to find a new route. We evaluate the performance of GAMAN by computer simulations and show that GAMAN has better behaviour than GLBR (Genetic Load Balancing Routing).Peer ReviewedPostprint (published version
    • …
    corecore