933 research outputs found

    Design of a haptic device for teleoperation and virtual reality systems

    Get PDF
    IEEE International Conference on Systems, Man and Cybernetics, SMC 2009; San Antonio, TX; United States; 11 October 2009 through 14 October 2009Haptics technology has increased the precision and telepresence of the teleoperation and precision of the in-house robotic applications by force and surface information feedback. Force feedback is achieved through sending back the pressure and force information via a haptic device as the information is created or measured at the point of interest. In order to configure such a system, design, analysis and production processes of a haptic device, which is suitable for that specific application, becomes important. Today, haptic devices find use in assistive surgical robotics and most of the teleoperation systems. These devices are also extensively utilized in simulators to train medical and military personnel. The objective of this work is to design a haptic device with a new structure that has the potential to increase the precision of the robotic operation. Thus, literature is reviewed and possible robot manipulator designs are investigated to increase the precision in haptics applications. As a result of the investigations, conceptual designs are developed. Ultimately, final design is selected and produced after it is investigated in computer-aided- design (CAD) environment and its kinematic and structural analyses are carried out

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters

    Hyper Redundant Manipulators

    Get PDF

    Design Issues and Application of Cable-Based Parallel Manipulators for Rehabilitation Therapy

    Get PDF
    In this study, cable-based manipulators are proposed for application in rehabilitation therapies. Cable-based manipulators show good features that are very useful when the system has to interact with humans. In particular, they can be used to aid motion or as monitoring/training systems in rehabilitation therapies. Modelling and simulation of both active and passive cable-based parallel manipulators are presented for an application to help older people, patients or disabled people in the sit-to-stand transfer and as a monitoring/training system. Experimental results are presented by using built prototypes

    Design and analysis of kinematically redundant planar parallel manipulator for isotropic stiffness condition

    Get PDF
    Parallel manipulators are a form of closed loop linkages and have a wide range of applications e.g. surgical robots, flight simulators, pointing devices etc. Parallel mechanisms have many advantages over serial manipulator. Higher accuracy, stiffness and increased payload capacity are the characteristics of parallel manipulator. In spite of many advantages, they have limited workspace and more singularity regions. So, redundant architectures have become popular. However, redundancy leads to infinite solutions for inverse kinematic problem. The current work addresses this issue of resolving the redundancy of kinematically redundant planar parallel manipulators using optimization based approach. First the conventional non-redundant 3-RPR planar parallel manipulator is presented. Afterwards the kinematically redundant counterpart 3-PRPR is discussed and actuation redundant 4-RPR has been touched upon briefly. Computer simulations have been performed for the kinematic issues using MATLAB programme . The workspace of redundant and non-redundant parallel manipulators have been obtained. The generalized stiffness matrix has been derived based upon the Jacobian model and the principle of duality between kinematics and statics. A stiffness index has been formulated and the isotropy of stiffness index is used as the criterion for resolving redundancy. A novel spiral optimization metaheuristics has been used to achieve the isotropic stiffness within the selected workshape and the results are compared against particle swarm optimization. The results obtained from the novel Spiral optimization are found to be more effective and closer to the objective function as compared to the particle swarm optimization. Optimum redundant parameters are obtained as a result of the analysis. A wooden skeletal prototype has also been fabricated to enhance the understanding of the mechanism workability
    corecore