1,073 research outputs found

    A performance study of routing protocols for mobile grid environment

    Get PDF
    Integration of mobile wireless consumer devices into the Grid initially seems unlikely due to limitation such as CPU performance,small secondary storage, heightened battery consumption sensitivity and unreliable low-bandwidth communication. The current grid architecture and algorithm also do not take into account the mobile computing environment since mobile devices have not been seriously considered as valid computing resources or interfaces in grid communities. This paper presents the results of simulation done in identifying a suitable ad hoc routing protocol that can be used for the target grid application in mobile environment. The simulation comparing three ad hoc routing protocols named DSDV, DSR and AODV

    Analysis and Modeling Experiment Performance Parameters of Routing Protocols in MANETs and VANETs

    Full text link
    In this paper, a framework for experimental parameters in which Packet Delivery Ratio (PDR), effect of link duration over End-to-End Delay (E2ED) and Normalized Routing Overhead (NRO) in terms of control packets is analyzed and modeled for Mobile Ad-Hoc NETworks (MANETs) and Vehicular Ad-Hoc NETworks (VANETs) with the assumption that nodes (vehicles) are sparsely moving in two different road. Moreover, this paper contributes the performance comparison of one Proactive Routing Protocol; Destination Sequenced Distance vector (DSDV) and two reactive protocols; DYnamic Source Routing (DSR) and DYnamic MANET On-Demand (DYMO). A novel contribution of this work is enhancements in default versions of selected routing protocols. Three performance parameters; PDR, E2ED and NRO with varying scalabilities are measured to analyze the performance of selected routing protocols with their original and enhanced versions. From extensive simulations, it is observed that DSR outperforms among all three protocols at the cost of delay. NS-2 simulator is used for simulation with TwoRayGround propagation model to evaluate analytical results
    corecore