1,114 research outputs found

    Space-Time Trellis and Space-Time Block Coding Versus Adaptive Modulation and Coding Aided OFDM for Wideband Channels

    No full text
    Abstract—The achievable performance of channel coded spacetime trellis (STT) codes and space-time block (STB) codes transmitted over wideband channels is studied in the context of schemes having an effective throughput of 2 bits/symbol (BPS) and 3 BPS. At high implementational complexities, the best performance was typically provided by Alamouti’s unity-rate G2 code in both the 2-BPS and 3-BPS scenarios. However, if a low complexity implementation is sought, the 3-BPS 8PSK space-time trellis code outperfoms the G2 code. The G2 space-time block code is also combined with symbol-by-symbol adaptive orthogonal frequency division multiplex (AOFDM) modems and turbo convolutional channel codecs for enhancing the system’s performance. It was concluded that upon exploiting the diversity effect of the G2 space-time block code, the channel-induced fading effects are mitigated, and therefore, the benefits of adaptive modulation erode. In other words, once the time- and frequency-domain fades of the wideband channel have been counteracted by the diversity-aided G2 code, the benefits of adaptive modulation erode, and hence, it is sufficient to employ fixed-mode modems. Therefore, the low-complexity approach of mitigating the effects of fading can be viewed as employing a single-transmitter, single-receiver-based AOFDM modem. By contrast, it is sufficient to employ fixed-mode OFDM modems when the added complexity of a two-transmitter G2 scheme is affordable

    System level evaluation of interference in vehicular mobile broadband networks

    Get PDF

    A comparison of digital transmission techniques under multichannel conditions at 2.4 GHz in the ISM BAND

    Get PDF
    In order to meet the observation quality criteria of micro-UAVs, and particularly in the context of the « Trophée Micro-Drones », ISAE/SUPAERO is studying technical solutions to transmit a high data rate from a video payload onboard a micro-UAV. The laboratory has to consider the impact of multipath and shadowing effects on the emitted signal. Therefore fading resistant transmission techniques are considered. This techniques paper have to reveal an optimum trade-off between three parameters, namely: the characteristics of the video stream, the complexity of the modulation and coding scheme, and the efficiency of the transmission, in term of BER

    Cross-layer wireless bit rate adaptation

    Get PDF
    This paper presents SoftRate, a wireless bit rate adaptation protocol that is responsive to rapidly varying channel conditions. Unlike previous work that uses either frame receptions or signal-to-noise ratio (SNR) estimates to select bit rates, SoftRate uses confidence information calculated by the physical layer and exported to higher layers via the SoftPHY interface to estimate the prevailing channel bit error rate (BER). Senders use this BER estimate, calculated over each received packet (even when the packet has no bit errors), to pick good bit rates. SoftRate's novel BER computation works across different wireless environments and hardware without requiring any retraining. SoftRate also uses abrupt changes in the BER estimate to identify interference, enabling it to reduce the bit rate only in response to channel errors caused by attenuation or fading. Our experiments conducted using a software radio prototype show that SoftRate achieves 2X higher throughput than popular frame-level protocols such as SampleRate and RRAA. It also achieves 20% more throughput than an SNR-based protocol trained on the operating environment, and up to 4X higher throughput than an untrained SNR-based protocol. The throughput gains using SoftRate stem from its ability to react to channel variations within a single packet-time and its robustness to collision losses.National Science Foundation (U.S.) (Grant CNS-0721702)National Science Foundation (U.S.) (Grant CNS-0520032)Foxconn International Holdings Ltd
    corecore