3,164 research outputs found

    Strengthening e-banking security using keystroke dynamics

    Get PDF
    This paper investigates keystroke dynamics and its possible use as a tool to prevent or detect fraud in the banking industry. Given that banks are constantly on the lookout for improved methods to address the menace of fraud, the paper sets out to review keystroke dynamics, its advantages, disadvantages and potential for improving the security of e-banking systems. This paper evaluates keystroke dynamics suitability of use for enhancing security in the banking sector. Results from the literature review found that keystroke dynamics can offer impressive accuracy rates for user identification. Low costs of deployment and minimal change to users modus operandi make this technology an attractive investment for banks. The paper goes on to argue that although this behavioural biometric may not be suitable as a primary method of authentication, it can be used as a secondary or tertiary method to complement existing authentication systems

    Secure Mobile Payment Architecture Enabling Multi-factor Authentication

    Full text link
    The rise of smartphones has led to a significant increase in the usage of mobile payments. Mobile payments allow individuals to access financial resources and make transactions through their mobile devices while on the go. However, the current mobile payment systems were designed to align with traditional payment structures, which limits the full potential of smartphones, including their security features. This has become a major concern in the rapidly growing mobile payment market. To address these security concerns,in this paper we propose new mobile payment architecture. This architecture leverages the advanced capabilities of modern smartphones to verify various aspects of a payment, such as funds, biometrics, location, and others. The proposed system aims to guarantee the legitimacy of transactions and protect against identity theft by verifying multiple elements of a payment. The security of mobile payment systems is crucial, given the rapid growth of the market. Evaluating mobile payment systems based on their authentication, encryption, and fraud detection capabilities is of utmost importance. The proposed architecture provides a secure mobile payment solution that enhances the overall payment experience by taking advantage of the advanced capabilities of modern smartphones. This will not only improve the security of mobile payments but also offer a more user-friendly payment experience for consumers

    Biometrics-as-a-Service: A Framework to Promote Innovative Biometric Recognition in the Cloud

    Full text link
    Biometric recognition, or simply biometrics, is the use of biological attributes such as face, fingerprints or iris in order to recognize an individual in an automated manner. A key application of biometrics is authentication; i.e., using said biological attributes to provide access by verifying the claimed identity of an individual. This paper presents a framework for Biometrics-as-a-Service (BaaS) that performs biometric matching operations in the cloud, while relying on simple and ubiquitous consumer devices such as smartphones. Further, the framework promotes innovation by providing interfaces for a plurality of software developers to upload their matching algorithms to the cloud. When a biometric authentication request is submitted, the system uses a criteria to automatically select an appropriate matching algorithm. Every time a particular algorithm is selected, the corresponding developer is rendered a micropayment. This creates an innovative and competitive ecosystem that benefits both software developers and the consumers. As a case study, we have implemented the following: (a) an ocular recognition system using a mobile web interface providing user access to a biometric authentication service, and (b) a Linux-based virtual machine environment used by software developers for algorithm development and submission

    Airport Passenger Processing Technology: A Biometric Airport Journey

    Get PDF
    A passengers’ traveling journey throughout the airport is anything but simple. A passenger goes through numerous hoops and hurdles before safely boarding the aircraft. Many airports today are implementing isolated solutions for passenger processing. Some of these technologies include automated self-service kiosks and bag tag, self-service bag drop-off, along with automated self-service gates for boarding and border control. These solutions can be integrated with biometric systems to enhance passenger handling. This thesis analyzes the current passenger processing technology implemented at airports around the world and their associated challenges that passengers face. A new passenger processing technology called a biometric single token identification (ID) is presented as a solution to help alleviate current issues. By using a medium-sized international airport as a case study, the results show that a single token ID is beneficial to the time it takes to process a passenger. Furthermore, it demonstrates that implementation of a single token ID with self-service technology can provide enhanced passenger travel experience, improving operational process efficiency, all while ensuring safety and security
    • …
    corecore