19,374 research outputs found

    The CLAWAR project

    Get PDF
    In Europe, there are two main thematic groups focusing on robotics, the Climbing and Walking Robots (CLAWAR) project (http://www.clawar.net) and the European Robotics Network (EURON) project (http://www.euron.org). The two networks are complementary: CLAWAR is industrially focused on the immediate needs, and EURON is focused more on blue skies research. This article presents the activities of the CLAWAR project

    Developing rehabilitation robots for the brain injured

    Get PDF

    The CLAWAR project

    Get PDF
    In Europe, there are two main thematic groups focusing on robotics, the Climbing and Walking Robots (CLAWAR) project (http://www.clawar.net) and the European Robotics Network (EURON) project (http://www.euron.org). The two networks are complementary: CLAWAR is industrially focused on the immediate needs, and EURON is focused more on blue skies research. This article presents the activities of the CLAWAR project

    Designing rehabilitation robots for the brain injured

    Get PDF

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    External localization system for mobile robotics

    Get PDF
    We present a fast and precise vision-based software intended for multiple robot localization. The core component of the proposed localization system is an efficient method for black and white circular pattern detection. The method is robust to variable lighting conditions, achieves sub-pixel precision, and its computational complexity is independent of the processed image size. With off-the-shelf computational equipment and low-cost camera, its core algorithm is able to process hundreds of images per second while tracking hundreds of objects with millimeter precision. We propose a mathematical model of the method that allows to calculate its precision, area of coverage, and processing speed from the camera’s intrinsic parameters and hardware’s processing capacity. The correctness of the presented model and performance of the algorithm in real-world conditions are verified in several experiments. Apart from the method description, we also publish its source code; so, it can be used as an enabling technology for various mobile robotics problems

    A layered fuzzy logic controller for nonholonomic car-like robot

    Get PDF
    A system for real time navigation of a nonholonomic car-like robot in a dynamic environment consists of two layers is described: a Sugeno-type fuzzy motion planner; and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including right and left views to identify the next step to the goal. A Sugeno-type fuzzy motion planner of four inputs one output is introduced to give a clear direction to the robot controller. The second stage is a modified proportional navigation based fuzzy controller based on the proportional navigation guidance law and able to optimize the robot's behavior in real time, i.e. to avoid stationary and moving obstacles in its local environment obeying kinematics constraints. The system has an intelligent combination of two behaviors to cope with obstacle avoidance as well as approaching a target using a proportional navigation path. The system was simulated and tested on different environments with various obstacle distributions. The simulation reveals that the system gives good results for various simple environments

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe
    corecore