5,324 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Adaptive sampling for spatial prediction in environmental monitoring using wireless sensor networks: A review

    Full text link
    © 2018 IEEE. The paper presents a review of the spatial prediction problem in the environmental monitoring applications by utilizing stationary and mobile robotic wireless sensor networks. First, the problem of selecting the best subset of stationary wireless sensors monitoring environmental phenomena in terms of sensing quality is surveyed. Then, predictive inference approaches and sampling algorithms for mobile sensing agents to optimally observe spatially physical processes in the existing works are analysed

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Adaptive Placement for Mobile Sensors in Spatial Prediction under Locational Errors

    Full text link
    © 2016 IEEE. This paper addresses the problem of driving robotic sensors for an energy-constrained mobile wireless network in efficiently monitoring and predicting spatial phenomena, under data locational errors. The paper first discusses how errors of mobile sensor locations affect estimating and predicting the spatial physical processes, given that spatial field to be monitored is modeled by a Gaussian process. It then proposes an optimality criterion for designing optimal sampling paths for the mobile robotic sensors given the localization uncertainties. Although the optimization problem is optimally intractable, it can be resolved by a polynomial approximation algorithm, which is proved to be practically feasible in an energy-constrained mobile sensor network. More importantly, near-optimal solutions of this navigation problem are guaranteed by a lower bound within 1-(1/e) of the optimum. The performance of the proposed approach is evaluated on simulated and real-world data sets, where impact of sensor location errors on the results is demonstrated by comparing the results with those obtained by using noise-less data locations

    Spatial prediction in mobile robotic wireless sensor networks with network constraints

    Full text link
    © 2016 IEEE. In recent years mobile robotic wireless sensor networks have been a popular choice for modelling spatial phenomena. This research is highly demanding and non-trivial due to challenges from both network and robotic aspects. In this paper, we address the spatial modelling of a physical phenomena with the network connectivity constraints while the mobile robots are striving to achieve the minimum modelling mismatch in terms of root mean square error (RMSE). We have resolved it through Gauss markov random field based approach which is a computationally efficient implementation of Gaussian processes. In this strategy, the Mobile Robotic Wireless Sensor Node (MRWSN) are centrally controlled to maintain the connectivity while minimizing the RMSE. Once the number of MRWSNs reach their maximum coverage, a new MRWSN is requested at the most informative location. The experimental results are convincing and they show the effectiveness of the algorithm
    corecore