26,869 research outputs found

    Tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi MARA terhadap mata pelajaran Bahasa Inggeris

    Get PDF
    Kajian ini dilakukan untuk mengenal pasti tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi Mara Sri Gading terhadap Bahasa Inggeris. Kajian yang dijalankan ini berbentuk deskriptif atau lebih dikenali sebagai kaedah tinjauan. Seramai 325 orang pelajar Diploma in Construction Technology dari Kolej Kemahiran Tinggi Mara di daerah Batu Pahat telah dipilih sebagai sampel dalam kajian ini. Data yang diperoleh melalui instrument soal selidik telah dianalisis untuk mendapatkan pengukuran min, sisihan piawai, dan Pekali Korelasi Pearson untuk melihat hubungan hasil dapatan data. Manakala, frekuensi dan peratusan digunakan bagi mengukur penguasaan pelajar. Hasil dapatan kajian menunjukkan bahawa tahap penguasaan Bahasa Inggeris pelajar adalah berada pada tahap sederhana manakala faktor utama yang mempengaruhi penguasaan Bahasa Inggeris tersebut adalah minat diikuti oleh sikap. Hasil dapatan menggunakan pekali Korelasi Pearson juga menunjukkan bahawa terdapat hubungan yang signifikan antara sikap dengan penguasaan Bahasa Inggeris dan antara minat dengan penguasaan Bahasa Inggeris. Kajian menunjukkan bahawa semakin positif sikap dan minat pelajar terhadap pengajaran dan pembelajaran Bahasa Inggeris semakin tinggi pencapaian mereka. Hasil daripada kajian ini diharapkan dapat membantu pelajar dalam meningkatkan penguasaan Bahasa Inggeris dengan memupuk sikap positif dalam diri serta meningkatkan minat mereka terhadap Bahasa Inggeris dengan lebih baik. Oleh itu, diharap kajian ini dapat memberi panduan kepada pihak-pihak yang terlibat dalam membuat kajian yang akan datang

    Dynamic leveling control of a wireless self-balancing ROV using fuzzy logic controller

    Get PDF
    A remotely operated vehicle (ROV) is essentially an underwater mobile robot that is controlled and powered by an operator outside of the robot working environment. Like any other marine vehicle, ROV has to be designed to float in the water where its mass is supported by the buoyancy forces due to the displacement of water by its hull. Vertically positioning a mini ROV in centimetres resolution underwater and maintaining that state requires a distinctive technique partly because of the pressure and buoyancy exerted by the water towards the hull and partly because of the random waves produced by the water itself. That being said, the aim of the project is to design and develop a wireless self-balancing buoyancy system of a mini ROV using fuzzy logic controller. A liquid level sensor has been implemented to provide feedback to the Arduino microcontroller. A user-friendly graphical user interface (GUI) has been developed for real-time data monitoring as well as controlling the vertical position of the ROV. At the end of the project, the implemented fuzzy control system shows enhanced and better performance when compared with one without a controller, a proportional-derivative (PD) controller, and a proportionalintegral-derivative (PID) controller

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Encoderless position estimation and error correction techniques for miniature mobile robots

    Get PDF
    This paper presents an encoderless position estimation technique for miniature-sized mobile robots. Odometry techniques, which are based on the hardware components, are commonly used for calculating the geometric location of mobile robots. Therefore, the robot must be equipped with an appropriate sensor to measure the motion. However, due to the hardware limitations of some robots, employing extra hardware is impossible. On the other hand, in swarm robotic research, which uses a large number of mobile robots, equipping the robots with motion sensors might be costly. In this study, the trajectory of the robot is divided into several small displacements over short spans of time. Therefore, the position of the robot is calculated within a short period, using the speed equations of the robot's wheel. In addition, an error correction function is proposed that estimates the errors of the motion using a current monitoring technique. The experiments illustrate the feasibility of the proposed position estimation and error correction techniques to be used in miniature-sized mobile robots without requiring an additional sensor

    GPS-guided mobile robot platform featuring modular design elements for agricultural applications : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Engineering in Mechatronics at Massey University Turitea Campus, Palmerston North, New Zealand

    Get PDF
    The agricultural industry has not seen significant innovation in development of low-cost automated farming solutions, with current systems costing several thousands of dollars to implement. Currently these automated solutions are primarily implemented around crop planting and harvesting, and the large implementation cost of these systems makes them unfeasible for small-scale operations. Within many agricultural industries, workers expend a considerable amount of time undertaking simple tasks that are labour intensive. Many of these tasks could instead be completed using a self-driving robotic platform outfitted with the appropriate devices required for the tasks. This thesis covers the research work aiming to produce a solution that could turn an existing farming vehicle into a multipurpose low-cost agricultural platform, to act as the platform for an autonomous vehicle capable of performing pre-programmed tasks within an agricultural environment. A quad bike was selected as the vehicle platform for this research in which the control modules would control the speed and direction of this farm bike. Four modules were developed to control the vehicle components that would normally be operated by a human operator. These modules are comprised of mechanical actuators coupled with a microcontroller control system and includes some specific designs to maintain the user's ability to manually control the pre-existing systems. A gear-changing module controls the vehicles manual gearbox, providing a method to detect and control the vehicles current gear. A speed control module was developed to control the vehicles throttle and braking system and detects the vehicles speed. A steering module controls the vehicles steering system, allowing for accurate control of the vehicles direction. Finally, a vehicle controller module provides a central command interface that ties the previous three modules together and controls the vehicles electrical components and engine. Development of a low-cost differential GPS (DGPS) system was also undertaken to reduce the implementation cost of the system. Due to inconclusive results in relation to the positional accuracy of this system is was decided that a standard GPS system would be used for the vehicle prototype with further development on the DGPS system would be undertaken in future development of the research. The successful development of a farm automated vehicle platform was achieved through this research. With further improvement on software, intelligent control and the development of a low-cost differential global positioning satellite (GPS) system, a fully autonomous farm platform that can be outfitted with different tools or devices for the required farm tasks is feasible and practical

    Cooperative localization for mobile agents: a recursive decentralized algorithm based on Kalman filter decoupling

    Full text link
    We consider cooperative localization technique for mobile agents with communication and computation capabilities. We start by provide and overview of different decentralization strategies in the literature, with special focus on how these algorithms maintain an account of intrinsic correlations between state estimate of team members. Then, we present a novel decentralized cooperative localization algorithm that is a decentralized implementation of a centralized Extended Kalman Filter for cooperative localization. In this algorithm, instead of propagating cross-covariance terms, each agent propagates new intermediate local variables that can be used in an update stage to create the required propagated cross-covariance terms. Whenever there is a relative measurement in the network, the algorithm declares the agent making this measurement as the interim master. By acquiring information from the interim landmark, the agent the relative measurement is taken from, the interim master can calculate and broadcast a set of intermediate variables which each robot can then use to update its estimates to match that of a centralized Extended Kalman Filter for cooperative localization. Once an update is done, no further communication is needed until the next relative measurement
    • …
    corecore