208 research outputs found

    Multi-resolution SLAM for Real World Navigation

    Get PDF
    In this paper a hierarchical multi-resolution approach allowing for high precision and distinctiveness is presented. The method combines topological and metric paradigm. The metric approach, based on the Kalman Filter, uses a new concept to avoid the problem of the drift in odometry. For the topological framework the fingerprint sequence approach is used. During the construction of the topological map, a communication between the two paradigms is established. The fingerprint used for topological navigation enables also the re-initialization of the metric localization. The experimentation section will validate the multi-resolution-representation maps approach and presents different steps of the method

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Mobile Robot Feature-Based SLAM Behavior Learning, and Navigation in Complex Spaces

    Get PDF
    Learning mobile robot space and navigation behavior, are essential requirements for improved navigation, in addition to gain much understanding about the navigation maps. This chapter presents mobile robots feature-based SLAM behavior learning, and navigation in complex spaces. Mobile intelligence has been based on blending a number of functionaries related to navigation, including learning SLAM map main features. To achieve this, the mobile system was built on diverse levels of intelligence, this includes principle component analysis (PCA), neuro-fuzzy (NF) learning system as a classifier, and fuzzy rule based decision system (FRD)

    Multi-resolution SLAM for Real World Navigation

    Get PDF
    In this paper a hierarchical multi-resolution approach allowing for high precision and distinctiveness is presented. The method combines topological and metric paradigm. The metric approach, based on the Kalman Filter, uses a new concept to avoid the problem of the drift in odometry. For the topological framework the fingerprint sequence approach is used. During the construction of the topological map, a communication between the two paradigms is established. The fingerprint used for topological navigation enables also the re-initialization of the metric localization. The experimentation section will validate the multi-resolution-representation maps approach and presents different steps of the method
    corecore