1,802 research outputs found

    Heuristic Optimization Algorithms in Robotics

    Get PDF

    Motion Planning for Autonomous Ground Vehicles Using Artificial Potential Fields: A Review

    Full text link
    Autonomous ground vehicle systems have found extensive potential and practical applications in the modern world. The development of an autonomous ground vehicle poses a significant challenge, particularly in identifying the best path plan, based on defined performance metrics such as safety margin, shortest time, and energy consumption. Various techniques for motion planning have been proposed by researchers, one of which is the use of artificial potential fields. Several authors in the past two decades have proposed various modified versions of the artificial potential field algorithms. The variations of the traditional APF approach have given an answer to prior shortcomings. This gives potential rise to a strategic survey on the improved versions of this algorithm. This study presents a review of motion planning for autonomous ground vehicles using artificial potential fields. Each article is evaluated based on criteria that involve the environment type, which may be either static or dynamic, the evaluation scenario, which may be real-time or simulated, and the method used for improving the search performance of the algorithm. All the customized designs of planning models are analyzed and evaluated. At the end, the results of the review are discussed, and future works are proposed

    Mobile Robot Navigation in Static and Dynamic Environments using Various Soft Computing Techniques

    Get PDF
    The applications of the autonomous mobile robot in many fields such as industry, space, defence and transportation, and other social sectors are growing day by day. The mobile robot performs many tasks such as rescue operation, patrolling, disaster relief, planetary exploration, and material handling, etc. Therefore, an intelligent mobile robot is required that could travel autonomously in various static and dynamic environments. The present research focuses on the design and implementation of the intelligent navigation algorithms, which is capable of navigating a mobile robot autonomously in static as well as dynamic environments. Navigation and obstacle avoidance are one of the most important tasks for any mobile robots. The primary objective of this research work is to improve the navigation accuracy and efficiency of the mobile robot using various soft computing techniques. In this research work, Hybrid Fuzzy (H-Fuzzy) architecture, Cascade Neuro-Fuzzy (CN-Fuzzy) architecture, Fuzzy-Simulated Annealing (Fuzzy-SA) algorithm, Wind Driven Optimization (WDO) algorithm, and Fuzzy-Wind Driven Optimization (Fuzzy-WDO) algorithm have been designed and implemented to solve the navigation problems of a mobile robot in different static and dynamic environments. The performances of these proposed techniques are demonstrated through computer simulations using MATLAB software and implemented in real time by using experimental mobile robots. Furthermore, the performances of Wind Driven Optimization algorithm and Fuzzy-Wind Driven Optimization algorithm are found to be most efficient (in terms of path length and navigation time) as compared to rest of the techniques, which verifies the effectiveness and efficiency of these newly built techniques for mobile robot navigation. The results obtained from the proposed techniques are compared with other developed techniques such as Fuzzy Logics, Genetic algorithm (GA), Neural Network, and Particle Swarm Optimization (PSO) algorithm, etc. to prove the authenticity of the proposed developed techniques

    Optimization of an Autonomous Mobile Robot Path Planning Based on Improved Genetic Algorithms

    Get PDF
    Mobile robots are intended to operate in a variety of environments, and they need to be able to navigate and travel around obstacles, such as objects and barriers. In order to guarantee that the robot will not come into contact with any obstacles or other objects during its movement, algorithms for path planning have been demonstrated. The basic goal while constructing a route is to find the fastest and smoothest route between the starting point and the destination. This article describes route planning using the improvised genetic algorithm with the Bezier Curve (GA-BZ). This study carried out two main experiments, each using a 20x20 random grid map model with varying percentages of obstacles (5%, 15%, and 30% in the first experiment, and 25% and 50% in the second). In the initial experiments, the population (PN), generation (GN), and mutation rate (MR) of genetic algorithms (GA) will be altered to the following values: (PN = 100, 125, 150, or 200; GN = 100, 125, 150; and MR = 0.1, 0.3, 0.5, 0.7) respectively. The goal is to evaluate the effectiveness of AMR in terms of travel distance (m), total time (s), and total cost (RM) in comparison to traditional GA and GA-BZ. The second experiment examined robot performance utilising GA, GA-BZ, Simulated Annealing (SA), A-Star (A*), and Dijkstra's Algorithms (DA) for path distance (m), time travel (s), and fare trip (RM). The simulation results are analysed, compared, and explained. In conclusion, the project is summarised

    A one decade survey of autonomous mobile robot systems

    Get PDF
    Recently, autonomous mobile robots have gained popularity in the modern world due to their relevance technology and application in real world situations. The global market for mobile robots will grow significantly over the next 20 years. Autonomous mobile robots are found in many fields including institutions, industry, business, hospitals, agriculture as well as private households for the purpose of improving day-to-day activities and services. The development of technology has increased in the requirements for mobile robots because of the services and tasks provided by them, like rescue and research operations, surveillance, carry heavy objects and so on. Researchers have conducted many works on the importance of robots, their uses, and problems. This article aims to analyze the control system of mobile robots and the way robots have the ability of moving in real-world to achieve their goals. It should be noted that there are several technological directions in a mobile robot industry. It must be observed and integrated so that the robot functions properly: Navigation systems, localization systems, detection systems (sensors) along with motion and kinematics and dynamics systems. All such systems should be united through a control unit; thus, the mission or work of mobile robots are conducted with reliability

    Improved Modified Chaotic Invasive Weed Optimization Approach to Solve Multi-Target Assignment for Humanoid Robot

    Get PDF
    The paper presents an improved modified chaotic invasive weed optimization (IMCIWO) approach for solving a multi-target assignment for humanoid robot navigation. MCIWO is improved by utilizing the Bezier curve for smoothing the path and replaces the conventional split lines. In order to efficiently determine subsequent locations of the robot from the present location on the provided terrain, such that the routes to be specifically generated for the robot are relatively small, with the shortest distance from the barriers that have been generated using the IMCIWO approach. The MCIWO approach designed the path based on obstacles and targets position which is further smoothened by the Bezier curve. Simulations are performed which is further validated by real-time experiments in WEBOT and NAO robot respectively. They show good effectiveness with each other with a deviation of under 5%. Ultimately, the superiority of the developed approach is examined with existing techniques for navigation, and findings are substantially improved
    corecore