1,936 research outputs found

    Planar building facade segmentation and mapping using appearance and geometric constraints

    Full text link
    Abstract—Segmentation and mapping of planar building facades (PBFs) can increase a robot’s ability of scene under-standing and localization in urban environments which are often quasi-rectilinear and GPS-challenged. PBFs are basic components of the quasi-rectilinear environment. We propose a passive vision-based PBF segmentation and mapping algorithm by combining both appearance and geometric constraints. We propose a rectilinear index which allows us to segment out planar regions using appearance data. Then we combine geometric constraints such as reprojection errors, orientation constraints, and coplanarity constraints in an optimization process to improve the mapping of PBFs. We have implemented the algorithm and tested it in comparison with state-of-the-art. The results show that our method can reduce the angular error of scene structure by an average of 82.82%. I

    Autonomous Point Cloud Segmentation for Power Lines Inspection in Smart Grid

    Full text link
    LiDAR is currently one of the most utilized sensors to effectively monitor the status of power lines and facilitate the inspection of remote power distribution networks and related infrastructures. To ensure the safe operation of the smart grid, various remote data acquisition strategies, such as Airborne Laser Scanning (ALS), Mobile Laser Scanning (MLS), and Terrestrial Laser Scanning (TSL) have been leveraged to allow continuous monitoring of regional power networks, which are typically surrounded by dense vegetation. In this article, an unsupervised Machine Learning (ML) framework is proposed, to detect, extract and analyze the characteristics of power lines of both high and low voltage, as well as the surrounding vegetation in a Power Line Corridor (PLC) solely from LiDAR data. Initially, the proposed approach eliminates the ground points from higher elevation points based on statistical analysis that applies density criteria and histogram thresholding. After denoising and transforming of the remaining candidate points by applying Principle Component Analysis (PCA) and Kd-tree, power line segmentation is achieved by utilizing a two-stage DBSCAN clustering to identify each power line individually. Finally, all high elevation points in the PLC are identified based on their distance to the newly segmented power lines. Conducted experiments illustrate that the proposed framework is an agnostic method that can efficiently detect the power lines and perform PLC-based hazard analysis.Comment: Accepted in the 22nd World Congress of the International Federation of Automatic Control [IFAC WC 2023

    3D Reconstruction of Building Rooftop and Power Line Models in Right-of-Ways Using Airborne LiDAR Data

    Get PDF
    The research objectives aimed to achieve thorough the thesis are to develop methods for reconstructing models of building and PL objects of interest in the power line (PL) corridor area from airborne LiDAR data. For this, it is mainly concerned with the model selection problem for which model is more optimal in representing the given data set. This means that the parametric relations and geometry of object shapes are unknowns and optimally determined by the verification of hypothetical models. Therefore, the proposed method achieves high adaptability to the complex geometric forms of building and PL objects. For the building modeling, the method of implicit geometric regularization is proposed to rectify noisy building outline vectors which are due to noisy data. A cost function for the regularization process is designed based on Minimum Description Length (MDL) theory, which favours smaller deviation between a model and observation as well as orthogonal and parallel properties between polylines. Next, a new approach, called Piecewise Model Growing (PMG), is proposed for 3D PL model reconstruction using a catenary curve model. It piece-wisely grows to capture all PL points of interest and thus produces a full PL 3D model. However, the proposed method is limited to the PL scene complexity, which causes PL modeling errors such as partial, under- and over-modeling errors. To correct the incompletion of PL models, the inner and across span analysis are carried out, which leads to replace erroneous PL segments by precise PL models. The inner span analysis is performed based on the MDL theory to correct under- and over-modeling errors. The across span analysis is subsequently carried out to correct partial-modeling errors by finding start and end positions of PLs which denotes Point Of Attachment (POA). As a result, this thesis addresses not only geometrically describing building and PL objects but also dealing with noisy data which causes the incompletion of models. In the practical aspects, the results of building and PL modeling should be essential to effectively analyze a PL scene and quickly alleviate the potentially hazardous scenarios jeopardizing the PL system

    Appearance and Geometry Assisted Visual Navigation in Urban Areas

    Get PDF
    Navigation is a fundamental task for mobile robots in applications such as exploration, surveillance, and search and rescue. The task involves solving the simultaneous localization and mapping (SLAM) problem, where a map of the environment is constructed. In order for this map to be useful for a given application, a suitable scene representation needs to be defined that allows spatial information sharing between robots and also between humans and robots. High-level scene representations have the benefit of being more robust and having higher exchangeability for interpretation. With the aim of higher level scene representation, in this work we explore high-level landmarks and their usage using geometric and appearance information to assist mobile robot navigation in urban areas. In visual SLAM, image registration is a key problem. While feature-based methods such as scale-invariant feature transform (SIFT) matching are popular, they do not utilize appearance information as a whole and will suffer from low-resolution images. We study appearance-based methods and propose a scale-space integrated Lucas-Kanade’s method that can estimate geometric transformations and also take into account image appearance with different resolutions. We compare our method against state-of-the-art methods and show that our method can register images efficiently with high accuracy. In urban areas, planar building facades (PBFs) are basic components of the quasirectilinear environment. Hence, segmentation and mapping of PBFs can increase a robot’s abilities of scene understanding and localization. We propose a vision-based PBF segmentation and mapping technique that combines both appearance and geometric constraints to segment out planar regions. Then, geometric constraints such as reprojection errors, orientation constraints, and coplanarity constraints are used in an optimization process to improve the mapping of PBFs. A major issue in monocular visual SLAM is scale drift. While depth sensors, such as lidar, are free from scale drift, this type of sensors are usually more expensive compared to cameras. To enable low-cost mobile robots equipped with monocular cameras to obtain accurate position information, we use a 2D lidar map to rectify imprecise visual SLAM results using planar structures. We propose a two-step optimization approach assisted by a penalty function to improve on low-quality local minima results. Robot paths for navigation can be either automatically generated by a motion planning algorithm or provided by a human. In both cases, a scene representation of the environment, i.e., a map, is useful to specify meaningful tasks for the robot. However, SLAM results usually produce a sparse scene representation that consists of low-level landmarks, such as point clouds, which are neither convenient nor intuitive to use for task specification. We present a system that allows users to program mobile robots using high-level landmarks from appearance data

    Fluctuations around mean walking behaviors in diluted pedestrian flows

    Get PDF

    Active Vision for Scene Understanding

    Get PDF
    Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot\u27s view in order to explore interaction possibilities of the scene

    The robot's vista space : a computational 3D scene analysis

    Get PDF
    Swadzba A. The robot's vista space : a computational 3D scene analysis. Bielefeld (Germany): Bielefeld University; 2011.The space that can be explored quickly from a fixed view point without locomotion is known as the vista space. In indoor environments single rooms and room parts follow this definition. The vista space plays an important role in situations with agent-agent interaction as it is the directly surrounding environment in which the interaction takes place. A collaborative interaction of the partners in and with the environment requires that both partners know where they are, what spatial structures they are talking about, and what scene elements they are going to manipulate. This thesis focuses on the analysis of a robot's vista space. Mechanisms for extracting relevant spatial information are developed which enable the robot to recognize in which place it is, to detect the scene elements the human partner is talking about, and to segment scene structures the human is changing. These abilities are addressed by the proposed holistic, aligned, and articulated modeling approach. For a smooth human-robot interaction, the computed models should be aligned to the partner's representations. Therefore, the design of the computational models is based on the combination of psychological results from studies on human scene perception with basic physical properties of the perceived scene and the perception itself. The holistic modeling realizes a categorization of room percepts based on the observed 3D spatial layout. Room layouts have room type specific features and fMRI studies have shown that some of the human brain areas being active in scene recognition are sensitive to the 3D geometry of a room. With the aligned modeling, the robot is able to extract the hierarchical scene representation underlying a scene description given by a human tutor. Furthermore, it is able to ground the inferred scene elements in its own visual perception of the scene. This modeling follows the assumption that cognition and language schematize the world in the same way. This is visible in the fact that a scene depiction mainly consists of relations between an object and its supporting structure or between objects located on the same supporting structure. Last, the articulated modeling equips the robot with a methodology for articulated scene part extraction and fast background learning under short and disturbed observation conditions typical for human-robot interaction scenarios. Articulated scene parts are detected model-less by observing scene changes caused by their manipulation. Change detection and background learning are closely coupled because change is defined phenomenologically as variation of structure. This means that change detection involves a comparison of currently visible structures with a representation in memory. In range sensing this comparison can be nicely implement as subtraction of these two representations. The three modeling approaches enable the robot to enrich its visual perceptions of the surrounding environment, the vista space, with semantic information about meaningful spatial structures useful for further interaction with the environment and the human partner
    • …
    corecore