876 research outputs found

    Mobile multi-layered IPsec

    Full text link

    Design and implementation of the node identity internetworking architecture

    Get PDF
    The Internet Protocol (IP) has been proven very flexible, being able to accommodate all kinds of link technologies and supporting a broad range of applications. The basic principles of the original Internet architecture include end-to-end addressing, global routeability and a single namespace of IP addresses that unintentionally serves both as locators and host identifiers. The commercial success and widespread use of the Internet have lead to new requirements, which include internetworking over business boundaries, mobility and multi-homing in an untrusted environment. Our approach to satisfy these new requirements is to introduce a new internetworking layer, the node identity layer. Such a layer runs on top of the different versions of IP, but could also run directly on top of other kinds of network technologies, such as MPLS and 2G/3G PDP contexts. This approach enables connectivity across different communication technologies, supports mobility, multi-homing, and security from ground up. This paper describes the Node Identity Architecture in detail and discusses the experiences from implementing and running a prototype

    Security Enhancement of Route Optimization in Mobile IPv6 Networks

    Get PDF
    Mobile IPv6 is an IP-layer protocol that is designed to provide mobility support.It allows an IPv6 node to arbitrarily change its location in the IPv6 network while maintaining the existing connection by handling the change of addresses at the Internet layer. Route optimization is standard in Mobile IPv6 to eliminate inefficient triangle routing. Several methods were proposed to secure route optimization. Return routability was adopted by Internet Engineering Task Force (IETF) with its security protocol based on RFC 3775. Return routability is an infrastructureless, lightweight procedure that enables a Mobile IPv6 node to request another IPv6 node to check and test the ownership of its permanent address in both home network and current visited network. It authorizes a binding procedure by the use of cryptographically token exchange. However, return routability protocol in route optimization is to protect messages and is not able to detect or prevent an attacker which tampers against data. In this thesis, focus is given on Mobile IPv6 route optimization test-bed with enhanced security in terms of data integrity. The proposed method can be performed on top of the return routability procedure to detect and prevent Man-In-The-Middle attack by using encryption if any attack is detected. This also eliminates the additional delay compared to using encryption from the beginning of a connection. A real-time experimental test-bed has been set up, which is comprised of hardware, software and network analysis tools to monitor the packet flow and content of data packets. The test-bed consists of four computers acting as Mobile Node, Home Agent, Correspondent Node, and Router, respectively. To ensure the accuracy and integrity of the collected data, the Network Time Protocol (NTP) was used between the packet generator (Mobile Node) and packet receiver (Correspondent Node) to synchronize the time. The results show that the proposed method is able to work efficiently, maintaining 99% data security of route optimization in Mobile IPv6 (MIPv6) networks. The overall data integrity (by means of security) is improved 72% compared to existing MIPv6 by at a cost of 0.1 sec added overall delay, which is within the tolerable range by the network

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    An Architecture for QoS-capable Integrated Security Gateway to Protect Avionic Data Network

    Get PDF
    International audienceWhile the use of Internet Protocol (IP) in aviation allows new applications and benefits, it opens the doors for security risks and attacks. Many security mechanisms and solutions have evolved to mitigate the ever continuously increasing number of network attacks. Although these conventional solutions have solved some security problems, they also leave some security holes. Securing open and complex systems have become more and more complicated and obviously, the dependence on a single security mechanism gives a false sense of security while opening the doors for attackers. Hence, to ensure secure networks, several security mechanisms must work together in a harmonic multi-layered way. In addition, if we take QoS requirements into account, the problem becomes more complicated and necessitates in-depth reflexions. In this paper, we present the architecture of our QoS-capable integrated security gateway: a gateway that highly integrates well chosen technologies in the area of network security as well as QoS mechanisms to provide the strongest level of security for avionic data network; our main aim is to provide both multi-layered security and stable performances for critical network applications

    PRIVED: a Privacy Model for Heterogeneous Mobile Networks

    Get PDF
    We propose a network-oriented privacy model (PRIVED) composed by a well defined information model, using events, information sets and relationships to define the conceptual privacy relationships that can occur in the network. We propose formal rules and a network instantiation, using linkability and correlation as the main tools for network applicability. We also use the model to determine the best approaches towards privacy protection in the network, resulting in a vertical/horizontal network privacy dichotomy
    corecore