7,606 research outputs found

    Artificial Neural Network Approach to Mobile Location Estimation in GSM Network

    Get PDF
    The increase in utilisation of mobile location-based services (LBS) for commercial, safety and security purposes among others are the key drivers for improving location estimation accuracy to better serve those purposes. Hence, developing mobile location estimation with high accuracy has been an issue of a major research concern as so many methods have been proposed. Among these methods include Cell ID, global positioning system (GPS), fingerprinting, statistical, geometrical, angle, time based and recently artificial intelligence methods. The GPS techniques have offered superior measurement accuracy to others but suffer accuracy degradation in indoor and dense urban area due to non-line of sight (NLOS) propagation. This paper proposes the application of Levenberg Marquardt (LMA) training algorithm on new robust multilayered perceptron (MLP) neural network architecture for mobile positioning fitting for the urban area in the considered GSM network using received signal strength (RSS). The key performance metrics such as accuracy, cost, reliability and coverage are the major points considered in this paper. The technique was evaluated through a simulation using real data from field measurement and the results obtained proved the proposed model provides a practical positioning that meet Federal Communication Commission (FCC) accuracy requirement

    Radio frequency optimization of a Global System for Mobile (GSM) network

    Get PDF
    Includes bibliographical references

    Artificial neural networks for location estimation and co-cannel interference suppression in cellular networks

    Get PDF
    This thesis reports on the application of artificial neural networks to two important problems encountered in cellular communications, namely, location estimation and co-channel interference suppression. The prediction of a mobile location using propagation path loss (signal strength) is a very difficult and complex task. Several techniques have been proposed recently mostly based on linearized, geometrical and maximum likelihood methods. An alternative approach based on artificial neural networks is proposed in this thesis which offers the advantages of increased flexibility to adapt to different environments and high speed parallel processing. Location estimation provides users of cellular telephones with information about their location. Some of the existing location estimation techniques such as those used in GPS satellite navigation systems require non-standard features, either from the cellular phone or the cellular network. However, it is possible to use the existing GSM technology for location estimation by taking advantage of the signals transmitted between the phone and the network. This thesis proposes the application of neural networks to predict the location coordinates from signal strength data. New multi-layered perceptron and radial basis function based neural networks are employed for the prediction of mobile locations using signal strength measurements in a simulated COST-231 metropolitan environment. In addition, initial preliminary results using limited available real signal-strength measurements in a metropolitan environment are also reported comparing the performance of the neural predictors with a conventional linear technique. The results indicate that the neural predictors can be trained to provide a near perfect mapping using signal strength measurements from two or more base stations. The second application of neural networks addressed in this thesis, is concerned with adaptive equalization, which is known to be an important technique for combating distortion and Inter-Symbol Interference (ISI) in digital communication channels. However, many communication systems are also impaired by what is known as co-channel interference (CCI). Many digital communications systems such as digital cellular radio (DCR) and dual polarized micro-wave radio, for example, employ frequency re-usage and often exhibit performance limitation due to co-channel interference. The degradation in performance due to CCI is more severe than due to ISI. Therefore, simple and effective interference suppression techniques are required to mitigate the interference for a high-quality signal reception. The current work briefly reviews the application of neural network based non-linear adaptive equalizers to the problem of combating co-channel interference, without a priori knowledge of the channel or co-channel orders. A realistic co-channel system is used as a case study to demonstrate the superior equalization capability of the functional-link neural network based Decision Feedback Equalizer (DFE) compared to other conventional linear and neural network based non-linear adaptive equalizers.This project was funded by Solectron (Scotland) Ltd

    Dynamic W-CDMA network planning using mobile location

    Get PDF

    Sensing motion using spectral and spatial analysis of WLAN RSSI

    Get PDF
    In this paper we present how motion sensing can be obtained just by observing the WLAN radio signal strength and its fluctuations. The temporal, spectral and spatial characteristics of WLAN signal are analyzed. Our analysis confirms our claim that ’signal strength from access points appear to jump around more vigorously when the device is moving compared to when it is still and the number of detectable access points vary considerably while the user is on the move’. Using this observation, we present a novel motion detection algorithm, Spectrally Spread Motion Detection (SpecSMD) based on the spectral analysis of WLAN signal’s RSSI. To benchmark the proposed algorithm, we used Spatially Spread Motion Detection (SpatSMD), which is inspired by the recent work of Sohn et al. Both algorithms were evaluated by carrying out extensive measurements in a diverse set of conditions (indoors in different buildings and outdoors - city center, parking lot, university campus etc.,) and tested against the same data sets. The 94% average classification accuracy of the proposed SpecSMD is outperforming the accuracy of SpatSMD (accuracy 87%). The motion detection algorithms presented in this paper provide ubiquitous methods for deriving the state of the user. The algorithms can be implemented and run on a commodity device with WLAN capability without the need of any additional hardware support
    • 

    corecore