61 research outputs found

    Simulation of CPRI traffic on Optical Ethernet

    Get PDF
    Evolution of mobile networks calls for novel ways of reducing delays while improving the network capacity. All application types require a system to utilize the expanding data. In the future, the projection is that quality of service (QoS) will be a key measurement of any network. Delay and jitter present a challenge to achieving the QoS needed. This is due to the loss of packets experienced during transmission and retransmission. Hence, the thesis proposes a Hybrid switching solution to increase the efficiency of transport networks for mobile data. This is done by designing a model that reduces the number of wavelengths needed to transport Common Public Radio interface (CPRI) over Ethernet while sharing the same optical resources for conventional backhaul traffic. CPRI over Ethernet is an ideal method to aid in better exploitation of the resources. The proposed strategy minimizes the loss of packets by making use of the available gaps during the transmission. Implementing such a model requires a Guaranteed Service Traffic (GST) class, which does not allow for packet loss and is treated as high priority traffic. Additionally, GST has a fixed low delay that makes it resilient to any form of network failures. Moreover, CPRI assists in saving costs by exploiting the unused wavelength capacity left by the GST traffic. Backhaul traffic can exploit this unused capacity to make the system compact. The thesis considers two classes of service levels with possible set of services that have QoS. These are CPRI over Ethernet (CPRIoE) and traditional packet-based Backhaul traffic. CPRIoE is considered as the GST traffic while Backhaul is the Best Effort (BE) traffic. Both traffics are transported over the same links, sharing wavelength resources. The results indicate the effectiveness of combining services in managing multiple flows, thus saving resources and optimizing the network

    High-capacity 5G fronthaul networks based on optical space division multiplexing

    Get PDF
    \u3cp\u3eThe introduction of 5G mobile networks, bringing multi-Gbit/s user data rates and reduced latency, opens new opportunities for media generation, transport and distribution, as well as for new immersive media applications. The expected use of millimeter-wave carriers and the strong network densification resulting from a much reduced cell size--which enable the expected performance of 5G--pose major challenges to the fronthaul network. Space division multiplexing (SDM) in the optical domain has been suggested for ultra-high capacity fronthaul networks that naturally support different classes of fronthaul traffic and further enable the use of analog radio-over-fiber and advanced technologies, such as optical beamforming. This paper discusses the introduction of SDM with multi-core fibers in the fronthaul network as suggested by the blueSPACE project, regarding both digitized and analog radio-over-fiber fronthaul transport as well as the introduction of optical beamforming for high-capacity millimeter-wave radio access. Analog and digitized radio-over-fiber are discussed in a scenario featuring parallel fronthaul for different radio access technologies, showcasing their differences and potential when combined with SDM.\u3c/p\u3

    A Survey of the Functional Splits Proposed for 5G Mobile Crosshaul Networks

    Get PDF

    Joint access-backhaul perspective on mobility management in 5G networks

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The ongoing efforts in the research, development and standardization of 5G, by both industry and academia, have resulted in the identification of enablers (Software Defined Networks, Network Function Virtualization, Distributed Mobility Management, etc.) and critical areas (Mobility management, Interference management, Joint access-backhaul mechanisms, etc.) that will help achieve the 5G objectives. During these efforts, it has also been identified that the 5G networks, due to their high degree of heterogeneity, high QoS demand and the inevitable density (both in terms of access points and users), will need to have efficient joint backhaul and access mechanisms as well as enhanced mobility management mechanisms in order to be effective, efficient and ubiquitous. Therefore, in this paper, we first provide a discussion on the evolution of the backhaul scenario, and the necessity for joint access and backhaul optimization. Subsequently, and since mobility management mechanisms can entail the availability, reliability and heterogeneity of the future backhaul/fronthaul networks as parameters in determining the most optimal solution for a given context, a study with regards to the effect of future backhaul/fronthaul scenarios on the design and implementation of mobility management solutions in 5G networks has been performed.Postprint (author's final draft
    corecore