1,422 research outputs found

    Visual Saliency Estimation and Its Applications

    Get PDF
    The human visual system can automatically emphasize some parts of the image and ignore the other parts when seeing an image or a scene. Visual Saliency Estimation (VSE) aims to imitate this functionality of the human visual system to estimate the degree of human attention attracted by different image regions and locate the salient object. The study of VSE will help us explore the way human visual systems extract objects from an image. It has wide applications, such as robot navigation, video surveillance, object tracking, self-driving, etc. The current VSE approaches on natural images models generic visual stimuli based on lower-level image features, e.g., locations, local/global contrast, and feature correlation. However, existing models still suffered from some drawbacks. First, these methods fail in the cases when the objects are near the image borders. Second, due to imperfect model assumptions, many methods cannot achieve good results when the images have complicated backgrounds. In this work, I focuses on solving these challenges on the natural images by proposing a new framework with more robust task-related priors, and I apply the framework to low-quality biomedical images. The new framework formulates VSE on natural images as a quadratic program (QP) problem. It proposes an adaptive center-based bias hypothesis to replace the most common image center-based center-bias, which is much more robust even when the objects are far away from the image center. Second, it models a new smoothness term to force similar color having similar saliency statistics, which is more robust than that based on region dissimilarity when the image has a complicated background or low contrast. The new approach achieves the best performance among 11 latest methods on three public datasets. Three approaches based on the framework by integrating both high-level domain-knowledge and robust low-level saliency assumptions are utilized to imitate the radiologists\u27 attention to detect breast tumors from breast ultrasound images

    Time- and value-continuous explainable affect estimation in-the-wild

    Get PDF
    Today, the relevance of Affective Computing, i.e., of making computers recognise and simulate human emotions, cannot be overstated. All technology giants (from manufacturers of laptops to mobile phones to smart speakers) are in a fierce competition to make their devices understand not only what is being said, but also how it is being said to recognise user’s emotions. The goals have evolved from predicting the basic emotions (e.g., happy, sad) to now the more nuanced affective states (e.g., relaxed, bored) real-time. The databases used in such research too have evolved, from earlier featuring the acted behaviours to now spontaneous behaviours. There is a more powerful shift lately, called in-the-wild affect recognition, i.e., taking the research out of the laboratory, into the uncontrolled real-world. This thesis discusses, for the very first time, affect recognition for two unique in-the-wild audiovisual databases, GRAS2 and SEWA. The GRAS2 is the only database till date with time- and value-continuous affect annotations for Labov effect-free affective behaviours, i.e., without the participant’s awareness of being recorded (which otherwise is known to affect the naturalness of one’s affective behaviour). The SEWA features participants from six different cultural backgrounds, conversing using a video-calling platform. Thus, SEWA features in-the-wild recordings further corrupted by unpredictable artifacts, such as the network-induced delays, frame-freezing and echoes. The two databases present a unique opportunity to study time- and value-continuous affect estimation that is truly in-the-wild. A novel ‘Evaluator Weighted Estimation’ formulation is proposed to generate a gold standard sequence from several annotations. An illustration is presented demonstrating that the moving bag-of-words (BoW) representation better preserves the temporal context of the features, yet remaining more robust against the outliers compared to other statistical summaries, e.g., moving average. A novel, data-independent randomised codebook is proposed for the BoW representation; especially useful for cross-corpus model generalisation testing when the feature-spaces of the databases differ drastically. Various deep learning models and support vector regressors are used to predict affect dimensions time- and value-continuously. Better generalisability of the models trained on GRAS2 , despite the smaller training size, makes a strong case for the collection and use of Labov effect-free data. A further foundational contribution is the discovery of the missing many-to-many mapping between the mean square error (MSE) and the concordance correlation coefficient (CCC), i.e., between two of the most popular utility functions till date. The newly invented cost function |MSE_{XY}/σ_{XY}| has been evaluated in the experiments aimed at demystifying the inner workings of a well-performing, simple, low-cost neural network effectively utilising the BoW text features. Also proposed herein is the shallowest-possible convolutional neural network (CNN) that uses the facial action unit (FAU) features. The CNN exploits sequential context, but unlike RNNs, also inherently allows data- and process-parallelism. Interestingly, for the most part, these white-box AI models have shown to utilise the provided features consistent with the human perception of emotion expression

    Novel Texture-based Probabilistic Object Recognition and Tracking Techniques for Food Intake Analysis and Traffic Monitoring

    Get PDF
    More complex image understanding algorithms are increasingly practical in a host of emerging applications. Object tracking has value in surveillance and data farming; and object recognition has applications in surveillance, data management, and industrial automation. In this work we introduce an object recognition application in automated nutritional intake analysis and a tracking application intended for surveillance in low quality videos. Automated food recognition is useful for personal health applications as well as nutritional studies used to improve public health or inform lawmakers. We introduce a complete, end-to-end system for automated food intake measurement. Images taken by a digital camera are analyzed, plates and food are located, food type is determined by neural network, distance and angle of food is determined and 3D volume estimated, the results are cross referenced with a nutritional database, and before and after meal photos are compared to determine nutritional intake. We compare against contemporary systems and provide detailed experimental results of our system\u27s performance. Our tracking systems consider the problem of car and human tracking on potentially very low quality surveillance videos, from fixed camera or high flying \acrfull{uav}. Our agile framework switches among different simple trackers to find the most applicable tracker based on the object and video properties. Our MAPTrack is an evolution of the agile tracker that uses soft switching to optimize between multiple pertinent trackers, and tracks objects based on motion, appearance, and positional data. In both cases we provide comparisons against trackers intended for similar applications i.e., trackers that stress robustness in bad conditions, with competitive results

    Machine learning in the real world with multiple objectives

    Full text link
    Machine learning (ML) is ubiquitous in many real-world applications. Existing ML systems are based on optimizing a single quality metric such as prediction accuracy. These metrics typically do not fully align with real-world design constraints such as computation, latency, fairness, and acquisition costs that we encounter in real-world applications. In this thesis, we develop ML methods for optimizing prediction accuracy while accounting for such real-world constraints. In particular, we introduce multi-objective learning in two different setups: resource-efficient prediction and algorithmic fairness in language models. First, we focus on decreasing the test-time computational costs of prediction systems. Budget constraints arise in many machine learning problems. Computational costs limit the usage of many models on small devices such as IoT or mobile phones and increase the energy consumption in cloud computing. We design systems that allow on-the-fly modification of the prediction model for each input sample. These sample-adaptive systems allow us to leverage wide variability in sample complexity where we learn policies for selecting cheap models for low complexity instances and using descriptive models only for complex ones. We utilize multiple--objective approach where one minimizes the system cost while preserving predictive accuracy. We demonstrate significant speed-ups in the fields of computer vision, structured prediction, natural language processing, and deep learning. In the context of fairness, we first demonstrate that a naive application of ML methods runs the risk of amplifying social biases present in data. This danger is particularly acute for methods based on word embeddings, which are increasingly gaining importance in many natural language processing applications of ML. We show that word embeddings trained on Google News articles exhibit female/male gender stereotypes. We demonstrate that geometrically, gender bias is captured by unique directions in the word embedding vector space. To remove bias we formulate a empirical risk objective with fairness constraints to remove stereotypes from embeddings while maintaining desired associations. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate that our algorithms significantly reduces gender bias in embeddings, while preserving its useful properties such as the ability to cluster related concepts

    Trustworthy machine learning through the lens of privacy and security

    Get PDF
    Nowadays, machine learning (ML) becomes ubiquitous and it is transforming society. However, there are still many incidents caused by ML-based systems when ML is deployed in real-world scenarios. Therefore, to allow wide adoption of ML in the real world, especially in critical applications such as healthcare, finance, etc., it is crucial to develop ML models that are not only accurate but also trustworthy (e.g., explainable, privacy-preserving, secure, and robust). Achieving trustworthy ML with different machine learning paradigms (e.g., deep learning, centralized learning, federated learning, etc.), and application domains (e.g., computer vision, natural language, human study, malware systems, etc.) is challenging, given the complicated trade-off among utility, scalability, privacy, explainability, and security. To bring trustworthy ML to real-world adoption with the trust of communities, this study makes a contribution of introducing a series of novel privacy-preserving mechanisms in which the trade-off between model utility and trustworthiness is optimized in different application domains, including natural language models, federated learning with human and mobile sensing applications, image classification, and explainable AI. The proposed mechanisms reach deployment levels of commercialized systems in real-world trials while providing trustworthiness with marginal utility drops and rigorous theoretical guarantees. The developed solutions enable safe, efficient, and practical analyses of rich and diverse user-generated data in many application domains

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras

    Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles

    Get PDF
    With the further development of automated driving, the functional performance increases resulting in the need for new and comprehensive testing concepts. This doctoral work aims to enable the transition from quantitative mileage to qualitative test coverage by aggregating the results of both knowledge-based and data-driven test platforms. The validity of the test domain can be extended cost-effectively throughout the software development process to achieve meaningful test termination criteria

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p
    • …
    corecore