109,334 research outputs found

    Multidimensional tactons for non-visual information presentation in mobile devices

    Get PDF
    Tactons are structured vibrotactile messages which can be used for non-visual information presentation when visual displays are limited, unavailable or inappropriate, such as in mobile phones and other mobile devices. Little is yet known about how to design them effectively. Previous studies have investigated the perception of Tactons which encode two dimensions of information using two different vibrotactile parameters (rhythm and roughness) and found recognition rates of around 70. When more dimensions of information are required it may be necessary to extend the parameter-space of these Tactons. Therefore this study investigates recognition rates for Tactons which encode a third dimension of information using spatial location. The results show that identification rate for three-parameter Tactons is just 48, but that this can be increased to 81 by reducing the number of values of one of the parameters. These results will aid designers to select suitable Tactons for use when designing mobile displays

    Change it Now: eBay v. MercExchange-Business Method Patent Litigation Reaches Critical Juncture Concerning Remedies for Infringement

    Get PDF
    Visual simultaneous localization and mapping (SLAM) as field has been researched for ten years, but with recent advances in mobile performance visual SLAM is entering the consumer market in a completely new way. A visual SLAM system will however be sensitive to non cautious use that may result in severe motion, occlusion or poor surroundings in terms of visual features that will cause the system to temporarily fail. The procedure of recovering from such a fail is called relocalization. Together with two similar problems localization, to find your position in an existing SLAM session, and loop closing, the online reparation and perfection of the map in an active SLAM session, these can be grouped as visual location recognition (VLR). This thesis presents novel results by combining the scalability of FabMap and the precision of 13th Lab's tracking yielding high-precision VLR, +/- 10 cm, while maintaining above 99 % precision and 60 % recall for sessions containing thousands of images. Everything functional purely on a normal mobile phone. The applications of VLR are many. Indoors, where GPS is not functioning, VLR can still provide positional information and navigate you through big complexes like airports and museums. Outdoors, VLR can improve the precision of GPS tenfold yielding a new level of navigational experience. Virtual and augmented reality applications are other areas that benefit from improved positioning and localization

    Training a Convolutional Neural Network for Appearance-Invariant Place Recognition

    Full text link
    Place recognition is one of the most challenging problems in computer vision, and has become a key part in mobile robotics and autonomous driving applications for performing loop closure in visual SLAM systems. Moreover, the difficulty of recognizing a revisited location increases with appearance changes caused, for instance, by weather or illumination variations, which hinders the long-term application of such algorithms in real environments. In this paper we present a convolutional neural network (CNN), trained for the first time with the purpose of recognizing revisited locations under severe appearance changes, which maps images to a low dimensional space where Euclidean distances represent place dissimilarity. In order for the network to learn the desired invariances, we train it with triplets of images selected from datasets which present a challenging variability in visual appearance. The triplets are selected in such way that two samples are from the same location and the third one is taken from a different place. We validate our system through extensive experimentation, where we demonstrate better performance than state-of-art algorithms in a number of popular datasets

    Leveraging Deep Visual Descriptors for Hierarchical Efficient Localization

    Full text link
    Many robotics applications require precise pose estimates despite operating in large and changing environments. This can be addressed by visual localization, using a pre-computed 3D model of the surroundings. The pose estimation then amounts to finding correspondences between 2D keypoints in a query image and 3D points in the model using local descriptors. However, computational power is often limited on robotic platforms, making this task challenging in large-scale environments. Binary feature descriptors significantly speed up this 2D-3D matching, and have become popular in the robotics community, but also strongly impair the robustness to perceptual aliasing and changes in viewpoint, illumination and scene structure. In this work, we propose to leverage recent advances in deep learning to perform an efficient hierarchical localization. We first localize at the map level using learned image-wide global descriptors, and subsequently estimate a precise pose from 2D-3D matches computed in the candidate places only. This restricts the local search and thus allows to efficiently exploit powerful non-binary descriptors usually dismissed on resource-constrained devices. Our approach results in state-of-the-art localization performance while running in real-time on a popular mobile platform, enabling new prospects for robotics research.Comment: CoRL 2018 Camera-ready (fix typos and update citations

    Appearance-based localization for mobile robots using digital zoom and visual compass

    Get PDF
    This paper describes a localization system for mobile robots moving in dynamic indoor environments, which uses probabilistic integration of visual appearance and odometry information. The approach is based on a novel image matching algorithm for appearance-based place recognition that integrates digital zooming, to extend the area of application, and a visual compass. Ambiguous information used for recognizing places is resolved with multiple hypothesis tracking and a selection procedure inspired by Markov localization. This enables the system to deal with perceptual aliasing or absence of reliable sensor data. It has been implemented on a robot operating in an office scenario and the robustness of the approach demonstrated experimentally
    • …
    corecore