9,175 research outputs found

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    DYVERSE: DYnamic VERtical Scaling in Multi-tenant Edge Environments

    Full text link
    Multi-tenancy in resource-constrained environments is a key challenge in Edge computing. In this paper, we develop 'DYVERSE: DYnamic VERtical Scaling in Edge' environments, which is the first light-weight and dynamic vertical scaling mechanism for managing resources allocated to applications for facilitating multi-tenancy in Edge environments. To enable dynamic vertical scaling, one static and three dynamic priority management approaches that are workload-aware, community-aware and system-aware, respectively are proposed. This research advocates that dynamic vertical scaling and priority management approaches reduce Service Level Objective (SLO) violation rates. An online-game and a face detection workload in a Cloud-Edge test-bed are used to validate the research. The merits of DYVERSE is that there is only a sub-second overhead per Edge server when 32 Edge servers are deployed on a single Edge node. When compared to executing applications on the Edge servers without dynamic vertical scaling, static priorities and dynamic priorities reduce SLO violation rates of requests by up to 4% and 12% for the online game, respectively, and in both cases 6% for the face detection workload. Moreover, for both workloads, the system-aware dynamic vertical scaling method effectively reduces the latency of non-violated requests, when compared to other methods

    ClouNS - A Cloud-native Application Reference Model for Enterprise Architects

    Full text link
    The capability to operate cloud-native applications can generate enormous business growth and value. But enterprise architects should be aware that cloud-native applications are vulnerable to vendor lock-in. We investigated cloud-native application design principles, public cloud service providers, and industrial cloud standards. All results indicate that most cloud service categories seem to foster vendor lock-in situations which might be especially problematic for enterprise architectures. This might sound disillusioning at first. However, we present a reference model for cloud-native applications that relies only on a small subset of well standardized IaaS services. The reference model can be used for codifying cloud technologies. It can guide technology identification, classification, adoption, research and development processes for cloud-native application and for vendor lock-in aware enterprise architecture engineering methodologies

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram

    Single-Board-Computer Clusters for Cloudlet Computing in Internet of Things

    Get PDF
    The number of connected sensors and devices is expected to increase to billions in the near future. However, centralised cloud-computing data centres present various challenges to meet the requirements inherent to Internet of Things (IoT) workloads, such as low latency, high throughput and bandwidth constraints. Edge computing is becoming the standard computing paradigm for latency-sensitive real-time IoT workloads, since it addresses the aforementioned limitations related to centralised cloud-computing models. Such a paradigm relies on bringing computation close to the source of data, which presents serious operational challenges for large-scale cloud-computing providers. In this work, we present an architecture composed of low-cost Single-Board-Computer clusters near to data sources, and centralised cloud-computing data centres. The proposed cost-efficient model may be employed as an alternative to fog computing to meet real-time IoT workload requirements while keeping scalability. We include an extensive empirical analysis to assess the suitability of single-board-computer clusters as cost-effective edge-computing micro data centres. Additionally, we compare the proposed architecture with traditional cloudlet and cloud architectures, and evaluate them through extensive simulation. We finally show that acquisition costs can be drastically reduced while keeping performance levels in data-intensive IoT use cases.Ministerio de Economía y Competitividad TIN2017-82113-C2-1-RMinisterio de Economía y Competitividad RTI2018-098062-A-I00European Union’s Horizon 2020 No. 754489Science Foundation Ireland grant 13/RC/209
    corecore