1,808 research outputs found

    An Evolutionary MAP Filter for Mobile Robot Global Localization

    Get PDF

    Active Information Acquisition With Mobile Robots

    Get PDF
    The recent proliferation of sensors and robots has potential to transform fields as diverse as environmental monitoring, security and surveillance, localization and mapping, and structure inspection. One of the great technical challenges in these scenarios is to control the sensors and robots in order to extract accurate information about various physical phenomena autonomously. The goal of this dissertation is to provide a unified approach for active information acquisition with a team of sensing robots. We formulate a decision problem for maximizing relevant information measures, constrained by the motion capabilities and sensing modalities of the robots, and focus on the design of a scalable control strategy for the robot team. The first part of the dissertation studies the active information acquisition problem in the special case of linear Gaussian sensing and mobility models. We show that the classical principle of separation between estimation and control holds in this case. It enables us to reduce the original stochastic optimal control problem to a deterministic version and to provide an optimal centralized solution. Unfortunately, the complexity of obtaining the optimal solution scales exponentially with the length of the planning horizon and the number of robots. We develop approximation algorithms to manage the complexity in both of these factors and provide theoretical performance guarantees. Applications in gas concentration mapping, joint localization and vehicle tracking in sensor networks, and active multi-robot localization and mapping are presented. Coupled with linearization and model predictive control, our algorithms can even generate adaptive control policies for nonlinear sensing and mobility models. Linear Gaussian information seeking, however, cannot be applied directly in the presence of sensing nuisances such as missed detections, false alarms, and ambiguous data association or when some sensor observations are discrete (e.g., object classes, medical alarms) or, even worse, when the sensing and target models are entirely unknown. The second part of the dissertation considers these complications in the context of two applications: active localization from semantic observations (e.g, recognized objects) and radio signal source seeking. The complexity of the target inference problem forces us to resort to greedy planning of the sensor trajectories. Non-greedy closed-loop information acquisition with general discrete models is achieved in the final part of the dissertation via dynamic programming and Monte Carlo tree search algorithms. Applications in active object recognition and pose estimation are presented. The techniques developed in this thesis offer an effective and scalable approach for controlled information acquisition with multiple sensing robots and have broad applications to environmental monitoring, search and rescue, security and surveillance, localization and mapping, precision agriculture, and structure inspection

    Reinforcement Learning with Frontier-Based Exploration via Autonomous Environment

    Full text link
    Active Simultaneous Localisation and Mapping (SLAM) is a critical problem in autonomous robotics, enabling robots to navigate to new regions while building an accurate model of their surroundings. Visual SLAM is a popular technique that uses virtual elements to enhance the experience. However, existing frontier-based exploration strategies can lead to a non-optimal path in scenarios where there are multiple frontiers with similar distance. This issue can impact the efficiency and accuracy of Visual SLAM, which is crucial for a wide range of robotic applications, such as search and rescue, exploration, and mapping. To address this issue, this research combines both an existing Visual-Graph SLAM known as ExploreORB with reinforcement learning. The proposed algorithm allows the robot to learn and optimize exploration routes through a reward-based system to create an accurate map of the environment with proper frontier selection. Frontier-based exploration is used to detect unexplored areas, while reinforcement learning optimizes the robot's movement by assigning rewards for optimal frontier points. Graph SLAM is then used to integrate the robot's sensory data and build an accurate map of the environment. The proposed algorithm aims to improve the efficiency and accuracy of ExploreORB by optimizing the exploration process of frontiers to build a more accurate map. To evaluate the effectiveness of the proposed approach, experiments will be conducted in various virtual environments using Gazebo, a robot simulation software. Results of these experiments will be compared with existing methods to demonstrate the potential of the proposed approach as an optimal solution for SLAM in autonomous robotics.Comment: 23 pages, Journa

    Enhancing FastSLAM 2.0 performance using a DE Algorithm with Multi-mutation Strategies

    Get PDF
    FastSLAM 2.0 is considered one of the popular approaches that utilizes a Rao-Blackwellized particle filter for solving simultaneous localization and mapping (SLAM) problems. It is computationally efficient, robust and can be used to handle large and complex environments. However, the conventional FastSLAM 2.0 algorithm is known to degenerate over time in terms of accuracy because of the particle depletion problem that arises in the resampling phase. In this work, we introduce an enhanced variant of the FastSLAM 2.0 algorithm based on an enhanced differential evolution (DE) algorithm with multi-mutation strategies to improve its performance and reduce the effect of the particle depletion problem. The Enhanced DE algorithm is used to optimize the particle weights and conserve diversity among particles. A comparison has been made with other two common algorithms to evaluate the performance of the proposed algorithm in estimating the robot and landmarks positions for a SLAM problem. Results are accomplished in terms of accuracy represented by the positioning errors of robot and landmark positions as well as their root mean square errors. All results show that the proposed algorithm is more accurate than the other compared algorithms in estimating the robot and landmark positions for all the considered cases. It can reduce the effect of the particle depletion problem and improve the performance of the FastSLAM 2.0 algorithm in solving SLAM problem
    • …
    corecore