21,363 research outputs found

    Integration of Mobile Robot Navigation on a Control Kernel Middleware based system

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-07593-8_55This paper introduces how a mobile robot can perform navigation tasks by taking the advantages of implementing a control kernel middleware (CKM) based system. Smart resources are also included into the topology of the system for improving the distribution of computational load of the needed tasks. The CKM and the smart resources are both highly recon gurable, even on execution time, and they also implement.lt detection mechanisms and QoS policies. By combining of these capabilities, the system can be dinamically adapted to the requirements of its tasks. Furthermore, this solution is suitable for most type of robots, including those which are provided of a low computational power because of the distribution of load, the bene ts of exploiting the smart resources capabilities, and the dynamic performance of the system.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under the CICYT project Mission Based Control (COBAMI): DPI2011-28507-002-02.Munera SĂĄnchez, E.; Muñoz Alcobendas, M.; Posadas-YagĂŒe, J.; Poza-Lujan, J.; Blanes Noguera, F. (2014). Integration of Mobile Robot Navigation on a Control Kernel Middleware based system. En Distributed Computing and Artificial Intelligence, 11th International Conference. Springer Advances in Intelligent Systems and Computing Volume 290. 477-484. https://doi.org/10.1007/978-3-319-07593-8_55S477484Rock (Robot Constrution Toolkit), http://www.rock-robotics.org/Albertos, P., Crespo, A., SimĂł, J.: Control kernel: A key concept in embedded control systems. In: 4th IFAC Symposium on Mechatronic Systems (2006)Bruyninckx, H., Soetens, P., Koninckx, B.: The Real-Time Motion Control Core of the Orocos Project. In: IEEE International Conference on Robotics and Automation, pp. 2766–2771 (2003)De Souza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)Fitzpatrick, P., Metta, G., Natale, L.: Towards long-lived robot genes. Robotics and Autonomous Systems (2008)Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Middleware for robotics: A survey. In: 2008 IEEE Conference on Robotics, Automation and Mechatronics, pp. 736–742. IEEE (2008)Montemerlo, M., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot programming: The carnegie mellon navigation (carmen) toolkit. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 2436–2441. IEEE (2003)Muñoz, M., Munera, E., Blanes, J.F., Simo, J.E., Benet, G.: Event driven middleware for distributed system control. XXXIV Jornadas de Automatica, 8 (2013)Muñoz, M., Munera, E., Blanes, J.F., SimĂł, J.E.: A hierarchical hybrid architecture for mission-oriented robot control. In: Armada, M.A., Sanfeliu, A., Ferre, M. (eds.) First Iberian Robotics Conference of ROBOT 2013. AISC, vol. 252, pp. 363–380. Springer, Heidelberg (2014)SĂĄnchez, E.M., Alcobendas, M.M., Noguera, J.F.B., Gilabert, G.B., Ten, J.E.S.: A reliability-based particle filter for humanoid robot self-localization in RoboCup Standard Platform League. Sensors (Basel, Switzerland) 13(11), 14954–14983 (2013)Poza-LujĂĄn, J.-L., Posadas-YagĂŒe, J.-L., SimĂł-Ten, J.-E.: Relationship between Quality of Control and Quality of Service in Mobile Robot Navigation. In: Omatu, S., De Paz Santana, J.F., GonzĂĄlez, S.R., Molina, J.M., Bernardos, A.M., RodrĂ­guez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 557–564. Springer, Heidelberg (2012)Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems using the behavior-based control architecture iB2C. Robotics and Autonomous Systems 58(1), 46–67 (2010)Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: An open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3 (2009)Roy, N., Burgard, W., Fox, D., Thrun, S.: Coastal navigation-mobile robot navigation with uncertainty in dynamic environments. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation, vol. 1, pp. 35–40. IEEE (1999)Nicolau, V., Muñoz, M., SimĂł, J.: KertrolBot Platform: SiDiReLi: Distributed System with Limited Resources. Technical report, Institute of Control Systems and Industrial Computing - Polytechnic University of Valencia, Valencia, Spain (2011

    A mosaic of eyes

    Get PDF
    Autonomous navigation is a traditional research topic in intelligent robotics and vehicles, which requires a robot to perceive its environment through onboard sensors such as cameras or laser scanners, to enable it to drive to its goal. Most research to date has focused on the development of a large and smart brain to gain autonomous capability for robots. There are three fundamental questions to be answered by an autonomous mobile robot: 1) Where am I going? 2) Where am I? and 3) How do I get there? To answer these basic questions, a robot requires a massive spatial memory and considerable computational resources to accomplish perception, localization, path planning, and control. It is not yet possible to deliver the centralized intelligence required for our real-life applications, such as autonomous ground vehicles and wheelchairs in care centers. In fact, most autonomous robots try to mimic how humans navigate, interpreting images taken by cameras and then taking decisions accordingly. They may encounter the following difficulties

    Artificial Intelligence and Systems Theory: Applied to Cooperative Robots

    Full text link
    This paper describes an approach to the design of a population of cooperative robots based on concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - Instituto Superior Tecnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task planning and coordination, including cooperative reinforcement learning in cooperative and adversarial environments, and behavior-based architectures for real time task execution of cooperating robot teams

    Navite: A Neural Network System For Sensory-Based Robot Navigation

    Full text link
    A neural network system, NAVITE, for incremental trajectory generation and obstacle avoidance is presented. Unlike other approaches, the system is effective in unstructured environments. Multimodal inforrnation from visual and range data is used for obstacle detection and to eliminate uncertainty in the measurements. Optimal paths are computed without explicitly optimizing cost functions, therefore reducing computational expenses. Simulations of a planar mobile robot (including the dynamic characteristics of the plant) in obstacle-free and object avoidance trajectories are presented. The system can be extended to incorporate global map information into the local decision-making process.Defense Advanced Research Projects Agency (AFOSR 90-0083); Office of Naval Research (N00014-92-J-l309); Consejo Nacional de Ciencia y TecnologĂ­a (63l462

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Monocular navigation for long-term autonomy

    Get PDF
    We present a reliable and robust monocular navigation system for an autonomous vehicle. The proposed method is computationally efficient, needs off-the-shelf equipment only and does not require any additional infrastructure like radio beacons or GPS. Contrary to traditional localization algorithms, which use advanced mathematical methods to determine vehicle position, our method uses a more practical approach. In our case, an image-feature-based monocular vision technique determines only the heading of the vehicle while the vehicle's odometry is used to estimate the distance traveled. We present a mathematical proof and experimental evidence indicating that the localization error of a robot guided by this principle is bound. The experiments demonstrate that the method can cope with variable illumination, lighting deficiency and both short- and long-term environment changes. This makes the method especially suitable for deployment in scenarios which require long-term autonomous operation

    A short curriculum of the robotics and technology of computer lab

    Get PDF
    Our research Lab is directed by Prof. Anton Civit. It is an interdisciplinary group of 23 researchers that carry out their teaching and researching labor at the Escuela PolitĂ©cnica Superior (Higher Polytechnic School) and the Escuela de IngenierĂ­a InformĂĄtica (Computer Engineering School). The main research fields are: a) Industrial and mobile Robotics, b) Neuro-inspired processing using electronic spikes, c) Embedded and real-time systems, d) Parallel and massive processing computer architecture, d) Information Technologies for rehabilitation, handicapped and elder people, e) Web accessibility and usability In this paper, the Lab history is presented and its main publications and research projects over the last few years are summarized.Nuestro grupo de investigaciĂłn estĂĄ liderado por el profesor Civit. Somos un grupo multidisciplinar de 23 investigadores que realizan su labor docente e investigadora en la Escuela PolitĂ©cnica Superior y en Escuela de IngenierĂ­a InformĂĄtica. Las principales lĂ­neas de investigaciones son: a) RobĂłtica industrial y mĂłvil. b) Procesamiento neuro-inspirado basado en pulsos electrĂłnicos. c) Sistemas empotrados y de tiempo real. d) Arquitecturas paralelas y de procesamiento masivo. e) TecnologĂ­a de la informaciĂłn aplicada a la discapacidad, rehabilitaciĂłn y a las personas mayores. f) Usabilidad y accesibilidad Web. En este artĂ­culo se reseña la historia del grupo y se resumen las principales publicaciones y proyectos que ha conseguido en los Ășltimos años
    • 

    corecore