38 research outputs found

    Review of UAV positioning in indoor environments and new proposal based on US measurements

    Get PDF
    Este documento se considera que es una ponencia de congresos en lugar de un capítulo de libro.10th International Conference on Indoor Positioning and Indoor Navigation (IPIN 2019) Pisa, Italy, September 30th - October 3rd, 2019The use of unmanned aerial vehicles (UAVs) has increased dramatically in recent years because of their huge potential in both civil and military applications and the decrease in prize of UAVs products. Location detection can be implemented through GNSS technology in outdoor environments, nevertheless its accuracy could be insufficient for some applications. Usability of GNSS in indoor environments is limited due to the signal attenuation as it cross through walls or the absence of line of sight. Considering the big market opportunity of indoor UAVs many researchers are devoting their efforts in the exploration of solutions for their positioning. Indoor UAV applications include location based services (LBS), advertisement, ambient assisted living environments or emergency response. This work is an update survey in UAV indoor localization, so it can provide a guide and technical comparison perspective of different technologies with their main advantages and drawbacks. Finally, we propose an approach based on an ultrasonic local positioning system.Universidad de AlcaláJunta de Comunidades de Castilla-La ManchaMinisterio de Economía, Industria y Competitivida

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    Infrastructure Wi-Fi for connected autonomous vehicle positioning : a review of the state-of-the-art

    Get PDF
    In order to realize intelligent vehicular transport networks and self driving cars, connected autonomous vehicles (CAVs) are required to be able to estimate their position to the nearest centimeter. Traditional positioning in CAVs is realized by using a global navigation satellite system (GNSS) such as global positioning system (GPS) or by fusing weighted location parameters from a GNSS with an inertial navigation systems (INSs). In urban environments where Wi-Fi coverage is ubiquitous and GNSS signals experience signal blockage, multipath or non line-of-sight (NLOS) propagation, enterprise or carrier-grade Wi-Fi networks can be opportunistically used for localization or “fused” with GNSS to improve the localization accuracy and precision. While GNSS-free localization systems are in the literature, a survey of vehicle localization from the perspective of a Wi-Fi anchor/infrastructure is limited. Consequently, this review seeks to investigate recent technological advances relating to positioning techniques between an ego vehicle and a vehicular network infrastructure. Also discussed in this paper is an analysis of the location accuracy, complexity and applicability of surveyed literature with respect to intelligent transportation system requirements for CAVs. It is envisaged that hybrid vehicular localization systems will enable pervasive localization services for CAVs as they travel through urban canyons, dense foliage or multi-story car parks

    Exploring the Technical Advances and Limits of Autonomous UAVs for Precise Agriculture in Constrained Environments

    Get PDF
    In the field of precise agriculture with autonomous unmanned aerial vehicles (UAVs), the utilization of drones holds significant potential to transform crop monitoring, management, and harvesting techniques. However, despite the numerous benefits of UAVs in smart farming, there are still several technical challenges that need to be addressed in order to render their widespread adoption possible, especially in constrained environments. This paper provides a study of the technical aspect and limitations of autonomous UAVs in precise agriculture applications for constrained environments

    A Review of Radio Frequency Based Localisation for Aerial and Ground Robots with 5G Future Perspectives

    Get PDF
    Efficient localisation plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAVs), which contributes to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities to enhance the localisation of UAVs and UGVs. In this paper, we review radio frequency (RF)-based approaches to localisation. We review the RF features that can be utilized for localisation and investigate the current methods suitable for Unmanned Vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localisation for both UAVs and UGVs is examined, and the envisioned 5G NR for localisation enhancement, and the future research direction are explored

    Control and communication systems for automated vehicles cooperation and coordination

    Get PDF
    Mención Internacional en el título de doctorThe technological advances in the Intelligent Transportation Systems (ITS) are exponentially improving over the last century. The objective is to provide intelligent and innovative services for the different modes of transportation, towards a better, safer, coordinated and smarter transport networks. The Intelligent Transportation Systems (ITS) focus is divided into two main categories; the first is to improve existing components of the transport networks, while the second is to develop intelligent vehicles which facilitate the transportation process. Different research efforts have been exerted to tackle various aspects in the fields of the automated vehicles. Accordingly, this thesis is addressing the problem of multiple automated vehicles cooperation and coordination. At first, 3DCoAutoSim driving simulator was developed in Unity game engine and connected to Robot Operating System (ROS) framework and Simulation of Urban Mobility (SUMO). 3DCoAutoSim is an abbreviation for "3D Simulator for Cooperative Advanced Driver Assistance Systems (ADAS) and Automated Vehicles Simulator". 3DCoAutoSim was tested under different circumstances and conditions, afterward, it was validated through carrying-out several controlled experiments and compare the results against their counter reality experiments. The obtained results showed the efficiency of the simulator to handle different situations, emulating real world vehicles. Next is the development of the iCab platforms, which is an abbreviation for "Intelligent Campus Automobile". The platforms are two electric golf-carts that were modified mechanically, electronically and electrically towards the goal of automated driving. Each iCab was equipped with several on-board embedded computers, perception sensors and auxiliary devices, in order to execute the necessary actions for self-driving. Moreover, the platforms are capable of several Vehicle-to-Everything (V2X) communication schemes, applying three layers of control, utilizing cooperation architecture for platooning, executing localization systems, mapping systems, perception systems, and finally several planning systems. Hundreds of experiments were carried-out for the validation of each system in the iCab platform. Results proved the functionality of the platform to self-drive from one point to another with minimal human intervention.Los avances tecnológicos en Sistemas Inteligentes de Transporte (ITS) han crecido de forma exponencial durante el último siglo. El objetivo de estos avances es el de proveer de sistemas innovadores e inteligentes para ser aplicados a los diferentes medios de transporte, con el fin de conseguir un transporte mas eficiente, seguro, coordinado e inteligente. El foco de los ITS se divide principalmente en dos categorías; la primera es la mejora de los componentes ya existentes en las redes de transporte, mientras que la segunda es la de desarrollar vehículos inteligentes que hagan más fácil y eficiente el transporte. Diferentes esfuerzos de investigación se han llevado a cabo con el fin de solucionar los numerosos aspectos asociados con la conducción autónoma. Esta tesis propone una solución para la cooperación y coordinación de múltiples vehículos. Para ello, en primer lugar se desarrolló un simulador (3DCoAutoSim) de conducción basado en el motor de juegos Unity, conectado al framework Robot Operating System (ROS) y al simulador Simulation of Urban Mobility (SUMO). 3DCoAutoSim ha sido probado en diferentes condiciones y circunstancias, para posteriormente validarlo con resultados a través de varios experimentos reales controlados. Los resultados obtenidos mostraron la eficiencia del simulador para manejar diferentes situaciones, emulando los vehículos en el mundo real. En segundo lugar, se desarrolló la plataforma de investigación Intelligent Campus Automobile (iCab), que consiste en dos carritos eléctricos de golf, que fueron modificados eléctrica, mecánica y electrónicamente para darle capacidades autónomas. Cada iCab se equipó con diferentes computadoras embebidas, sensores de percepción y unidades auxiliares, con la finalidad de transformarlos en vehículos autónomos. Además, se les han dado capacidad de comunicación multimodal (V2X), se les han aplicado tres capas de control, incorporando una arquitectura de cooperación para operación en modo tren, diferentes esquemas de localización, mapeado, percepción y planificación de rutas. Innumerables experimentos han sido realizados para validar cada uno de los diferentes sistemas incorporados. Los resultados prueban la funcionalidad de esta plataforma para realizar conducción autónoma y cooperativa con mínima intervención humana.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Francisco Javier Otamendi Fernández de la Puebla.- Secretario: Hanno Hildmann.- Vocal: Pietro Cerr

    Indoor Localisation of Scooters from Ubiquitous Cost-Effective Sensors: Combining Wi-Fi, Smartphone and Wheel Encoders

    Get PDF
    Indoor localisation of people and objects has been a focus of research studies for several decades because of its great advantage to several applications. Accuracy has always been a challenge because of the uncertainty of the employed sensors. Several technologies have been proposed and researched, however, accuracy still represents an issue. Today, several sensor technologies can be found in indoor environments, some of which are economical and powerful, such as Wi-Fi. Meanwhile, Smartphones are typically present indoors because of the people that carry them along, while moving about within rooms and buildings. Furthermore, vehicles such as mobility scooters can also be present indoor to support people with mobility impairments, which may be equipped with low-cost sensors, such as wheel encoders. This thesis investigates the localisation of mobility scooters operating indoor. This represents a specific topic as most of today's indoor localisation systems are for pedestrians. Furthermore, accurate indoor localisation of those scooters is challenging because of the type of motion and specific behaviour. The thesis focuses on improving localisation accuracy for mobility scooters and on the use of already available indoor sensors. It proposes a combined use of Wi-Fi, Smartphone IMU and wheel encoders, which represents a cost-effective energy-efficient solution. A method has been devised and a system has been developed, which has been experimented on different environment settings. The outcome of the experiments are presented and carefully analysed in the thesis. The outcome of several trials demonstrates the potential of the proposed solutions in reducing positional errors significantly when compared to the state-of-the-art in the same area. The proposed combination demonstrated an error range of 0.35m - 1.35m, which can be acceptable in several applications, such as some related to assisted living. 3 As the proposed system capitalizes on the use of ubiquitous technologies, it opens up to a potential quick take up from the market, therefore being of great benefit for the target audience

    Location-Enabled IoT (LE-IoT): A Survey of Positioning Techniques, Error Sources, and Mitigation

    Get PDF
    The Internet of Things (IoT) has started to empower the future of many industrial and mass-market applications. Localization techniques are becoming key to add location context to IoT data without human perception and intervention. Meanwhile, the newly-emerged Low-Power Wide-Area Network (LPWAN) technologies have advantages such as long-range, low power consumption, low cost, massive connections, and the capability for communication in both indoor and outdoor areas. These features make LPWAN signals strong candidates for mass-market localization applications. However, there are various error sources that have limited localization performance by using such IoT signals. This paper reviews the IoT localization system through the following sequence: IoT localization system review -- localization data sources -- localization algorithms -- localization error sources and mitigation -- localization performance evaluation. Compared to the related surveys, this paper has a more comprehensive and state-of-the-art review on IoT localization methods, an original review on IoT localization error sources and mitigation, an original review on IoT localization performance evaluation, and a more comprehensive review of IoT localization applications, opportunities, and challenges. Thus, this survey provides comprehensive guidance for peers who are interested in enabling localization ability in the existing IoT systems, using IoT systems for localization, or integrating IoT signals with the existing localization sensors
    corecore