887 research outputs found

    Switched Beam Smart Antenna for Wireless Local Area Network

    Full text link
    In wireless communication system, interference is one of the issue facing that can disturb in communicating between base station and mobile devices. This paper propose switched beam smart antenna system, an octagonal configuration of directional antenna is introduced and selecting beam to desire user. Each beam of antenna covered 45 degrees; by assembly of all directional antennas to create an omni-directional configuration with coverage all the beam 360 degrees. To control of the beam switching, an inexpensive microcontroller PIC 16F877 from microchip used, radio signal strength of mobile device receive as reference signal and compare to each of beam, the highest signal received is selected than microcontroller will lock to the desire beam. A few samples of received signal strength to be analysis by an algorithm to avoid multiple signals and select actual signal strength received. In this experiment 2.45 GHz ISM band used for the transmitter and receiver and testing have been conducted in outdoor environment. Results shows that switched beam smart antenna working fine base on mobile device location and able to switch the beam while mobile device is moving

    Switched Beam Smart Antenna for Wireless Local Area Network

    Get PDF
    In wireless communication system, interference is one of the issue facing that can disturb in communicating between base station and mobile devices. This paper propose switched beam smart antenna system, an octagonal configuration of directional antenna is introduced and selecting beam to desire user. Each beam of antenna covered 45 degrees; by assembly of all directional antennas to create an omni-directional configuration with coverage all the beam 360 degrees. To control of the beam switching, an inexpensive microcontroller PIC 16F877 from microchip used, radio signal strength of mobile device receive as reference signal and compare to each of beam, the highest signal received is selected than microcontroller will lock to the desire beam. A few samples of received signal strength to be analysis by an algorithm to avoid multiple signals and select actual signal strength received. In this experiment 2.45 GHz ISM band used for the transmitter and receiver and testing have been conducted in outdoor environment. Results shows that switched beam smart antenna working fine base on mobile device location and able to switch the beam while mobile device is moving

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    MIMO Evolution Beyond 5G Through Reconfigurable Intelligent Surfaces and Fluid Antenna Systems

    Get PDF
    With massive deployment, multiple-input-multiple-output (MIMO) systems continue to take mobile communications to new heights, but the ever-increasing demands mean that there is a need to look beyond MIMO and pursue the next disruptive wireless technologies. Reconfigurable intelligent surface (RIS) is widely considered a key candidate technology block to provide the next generational leap. The first part of this article provides an updated overview of the conventional reflection-based RIS technology, which complements the existing literature to include active and semiactive RIS, and the synergies with cell-free massive MIMO (CF mMIMO). Then, we widen the scope to discuss the surface-wave-assisted RIS that represents a different design dimension in utilizing metasurface technologies. This goes beyond being a passive reflector and can use the surface as an intelligent propagation medium for superb radio propagation efficiency. The third part of this article turns the attention to the fluid antenna, a novel antenna technology that enables a diverse form of reconfigurability that can combine with RIS for ultrahigh capacity, power efficiency, and scalability. This article concludes with a discussion of the potential synergies that can be exploited between MIMO, RIS, and fluid antennas

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Antenna Technologies for NASA Applications

    Get PDF
    This presentation addresses the efforts being performed at GRC to develop antenna technology in support of NASA s Exploration Vision. In particular, the presentation discusses the communications architecture asset-specific data services, as well as wide area coverage, high gain, low mass deployable antennas. Phased array antennas as well as electrically small, lightweight, low power, multifunctional antennas will be also discussed

    Reconfigurable Intelligent Surfaces: Optimal Positioning and Coverage Improvement

    Get PDF
    With the emergence of future mobile generations beyond 5G, novel technologies are studied to satisfy the envisioned requirements of future services such as Ultra-Reliable Low Latency Communications (URLLC) or Virtual Reality. Among these technologies, Reconfigurable Intelligent Surfaces (RIS) arise as one of the most promising due to their capabilities to improve the channel while only modestly increasing the network energy consumption. However, multiple challenges have to be addressed before they can be deployed. In this thesis, we study strategies for positioning the RIS to achieve maximum SNR coverage in an outdoor propagation environment. Our model takes into account the effects of shadow fading and line-of-sight (LoS). A comparison between centralized and distributed deployments is also considered. Additionally, the required size of RIS to match the coverage of a small cell is assessed. The results show that the best positions to deploy a RIS lie close to the mobile terminals, in the vicinity of the boundary between covered and out-of-coverage areas. It is concluded that a centralized deployment is better than a distributed one, and a feasible size of the RIS which matches the small cell coverage is obtained

    AIS Algorithm for Smart Antenna Application in WLAN

    Get PDF
    Increasing numbers of wireless local area networks (WLAN) replacing wired networks have an impact on wireless network systems, causing issues such as interference. The smart antenna system is a method to overcome interference issues in WLANs. This paper proposes an artificial immune system (AIS) for a switch beam smart antenna system. A directional antenna is introduced to aim the beam at the desired user. The antenna consists of 8 directional antennas, each of which covers 45 degrees, thus creating an omnidirectional configuration of which the beams cover 360 degrees. To control the beam switching, an inexpensive PIC 16F877 microchip was used. An AIS algorithm was implemented in the microcontroller, which uses the received radio signal strength of the mobile device as reference. This is compared for each of the eight beams, after which the AIS algorithm selects the strongest signal received by the system and the microcontroller will then lock to the desired beam. In the experiment a frequency of 2.4 GHz (ISM band) was used for transmitting and receiving. A test of the system was conducted in an outdoor environment. The results show that the switch beam smart antenna worked fine based on locating the mobile device
    • …
    corecore