13,157 research outputs found

    Latency Bounds of Packet-Based Fronthaul for Cloud-RAN with Functionality Split

    Get PDF
    The emerging Cloud-RAN architecture within the fifth generation (5G) of wireless networks plays a vital role in enabling higher flexibility and granularity. On the other hand, Cloud-RAN architecture introduces an additional link between the central, cloudified unit and the distributed radio unit, namely fronthaul (FH). Therefore, the foreseen reliability and latency for 5G services should also be provisioned over the FH link. In this paper, focusing on Ethernet as FH, we present a reliable packet-based FH communication and demonstrate the upper and lower bounds of latency that can be offered. These bounds yield insights into the trade-off between reliability and latency, and enable the architecture design through choice of splitting point, focusing on high layer split between PDCP and RLC and low layer split between MAC and PHY, under different FH bandwidth and traffic properties. Presented model is then analyzed both numerically and through simulation, with two classes of 5G services that are ultra reliable low latency (URLL) and enhanced mobile broadband (eMBB).Comment: 6 pages, 7 figures, 3 tables, conference paper (ICC19

    Short Block-length Codes for Ultra-Reliable Low-Latency Communications

    Full text link
    This paper reviews the state of the art channel coding techniques for ultra-reliable low latency communication (URLLC). The stringent requirements of URLLC services, such as ultra-high reliability and low latency, have made it the most challenging feature of the fifth generation (5G) mobile systems. The problem is even more challenging for the services beyond the 5G promise, such as tele-surgery and factory automation, which require latencies less than 1ms and failure rate as low as 10−910^{-9}. The very low latency requirements of URLLC do not allow traditional approaches such as re-transmission to be used to increase the reliability. On the other hand, to guarantee the delay requirements, the block length needs to be small, so conventional channel codes, originally designed and optimised for moderate-to-long block-lengths, show notable deficiencies for short blocks. This paper provides an overview on channel coding techniques for short block lengths and compares them in terms of performance and complexity. Several important research directions are identified and discussed in more detail with several possible solutions.Comment: Accepted for publication in IEEE Communications Magazin

    A case study on latency, bandwidth and energy efficiency of mobile 5G and YouTube Edge service in London. Why the 5G ecosystem and energy efficiency matter?

    Full text link
    The advancements in 5G mobile networks and Edge computing offer great potential for services like augmented reality and Cloud gaming, thanks to their low latency and high bandwidth capabilities. However, the practical limitations of achieving optimal latency on real applications remain uncertain. This paper aims to investigate the actual latency and bandwidth provided by 5G Networks and YouTube Edge service in London, UK. We analyze how latency and bandwidth differ between 4G LTE and 5G networks and how the location of YouTube Edge servers impacts these metrics. Our research reveals over 10 significant observations and implications, indicating that the primary constraints on 4G LTE and 5G capabilities are the ecosystem and energy efficiency of mobile devices down-streaming data. Our study demonstrates that to fully unlock the potential of 5G and it's applications, it is crucial to prioritize efforts aimed at improving the ecosystem and enhancing the energy efficiency

    Investigating network services abstraction in 5G enabled device-to-device (D2D) communications

    Get PDF
    The increased demand of data rate by mobile users has led to the evolution of mobile network technologies from the fourth generation to fifth generation (5G). 5G mobile network will support various technologies that will be able to provide low latency, offload traffic and connect vertical industries. Device-to-device (D2D) communications will be used as the underlay technology for 5G network in the offloading of traffic from the cellular network and pushing content closer to the user. With D2D communication, various network services can be implemented to improve spectral efficiency and reduce energy consumption of mobile devices. This paper gives a brief overview of D2D communication and discusses different D2D applications. It proposes a network services abstraction and suggests the mapping of existing studies with the network service abstraction which can be used in the harnessing the development and implementation of D2D communication applications in 5G network. The paper also highlights possible future research for D2D communication in 5G network

    Investigating network services abstraction in 5G enabled device-to-device (D2D) communications

    Get PDF
    The increased demand of data rate by mobile users has led to the evolution of mobile network technologies from the fourth generation to fifth generation (5G). 5G mobile network will support various technologies that will be able to provide low latency, offload traffic and connect vertical industries. Device-to-device (D2D) communications will be used as the underlay technology for 5G network in the offloading of traffic from the cellular network and pushing content closer to the user. With D2D communication, various network services can be implemented to improve spectral efficiency and reduce energy consumption of mobile devices. This paper gives a brief overview of D2D communication and discusses different D2D applications. It proposes a network services abstraction and suggests the mapping of existing studies with the network service abstraction which can be used in the harnessing the development and implementation of D2D communication applications in 5G network. The paper also highlights possible future research for D2D communication in 5G network

    End-to-end performance evaluation of MEC deployments in 5G scenarios

    Get PDF
    Multi-access Edge Computing (MEC) promises to deliver localized computing power and storage. Coupled with low-latency 5G radio access, this enables the creation of high added-value services for mobile users, such as in-vehicle infotainment or remote driving. The performance of these services as well as their scalability will however depend on how MEC will be deployed in 5G systems. This paper evaluates different MEC deployment options, coherent with the respective 5G migration phases, using an accurate and comprehensive end-to-end (E2E) system simulation model (exploiting Simu5G for radio access, and Intel CoFluent for core network and MEC), taking into account user-related metrics such as response time or MEC latency. Our results show that 4G radio access is going to be a bottleneck, preventing MEC services from scaling up. On the other hand, the introduction of 5G will allow a considerable higher penetration of MEC services

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    Reliable and Low-Latency Fronthaul for Tactile Internet Applications

    Get PDF
    With the emergence of Cloud-RAN as one of the dominant architectural solutions for next-generation mobile networks, the reliability and latency on the fronthaul (FH) segment become critical performance metrics for applications such as the Tactile Internet. Ensuring FH performance is further complicated by the switch from point-to-point dedicated FH links to packet-based multi-hop FH networks. This change is largely justified by the fact that packet-based fronthauling allows the deployment of FH networks on the existing Ethernet infrastructure. This paper proposes to improve reliability and latency of packet-based fronthauling by means of multi-path diversity and erasure coding of the MAC frames transported by the FH network. Under a probabilistic model that assumes a single service, the average latency required to obtain reliable FH transport and the reliability-latency trade-off are first investigated. The analytical results are then validated and complemented by a numerical study that accounts for the coexistence of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency (URLLC) services in 5G networks by comparing orthogonal and non-orthogonal sharing of FH resources.Comment: 11pages, 13 figures, 3 bio photo

    Mobile Services Meet Distributed Cloud: Benefits, Applications, and Challenges

    Get PDF
    As the explosive growth of smart devices and enormous new applications, the variety of corresponding cloud services has been growing quickly. The conventional centralized cloud was faced with an overhead on backhaul links and high latency. Accordingly, a decentralized cloud paradigm including edge computing, mobile edge computing, cloudlet, and so on, was introduced to distribute cloud services to the edge network which located in proximity to mobile devices few years ago. However, this paradigm was not paid attention at that time since cloud technology and mobile network communication were immature to motivate mobile services. Recently, with the overwhelming growth of mobile communication technology and cloud technology, distributed cloud is emerging as a paradigm well equipped with technologies to support a broad range of mobile services. The 5G mobile communication technology provides high-speed data and low latency. Cloud services can be automatically deployed in the edge networks quickly and easily. Distributed cloud can prove itself to bring many benefits for mobile service such as reducing network latency, as well as computational and network overhead at the central cloud. Besides, we present some applications to emphasize the necessity of distributed cloud for mobile service and discuss further technical challenges in distributed cloud
    • …
    corecore