5 research outputs found

    LifeLogging: personal big data

    Get PDF
    We have recently observed a convergence of technologies to foster the emergence of lifelogging as a mainstream activity. Computer storage has become significantly cheaper, and advancements in sensing technology allows for the efficient sensing of personal activities, locations and the environment. This is best seen in the growing popularity of the quantified self movement, in which life activities are tracked using wearable sensors in the hope of better understanding human performance in a variety of tasks. This review aims to provide a comprehensive summary of lifelogging, to cover its research history, current technologies, and applications. Thus far, most of the lifelogging research has focused predominantly on visual lifelogging in order to capture life details of life activities, hence we maintain this focus in this review. However, we also reflect on the challenges lifelogging poses to an information retrieval scientist. This review is a suitable reference for those seeking a information retrieval scientist’s perspective on lifelogging and the quantified self

    Exploratory Browsing

    Get PDF
    In recent years the digital media has influenced many areas of our life. The transition from analogue to digital has substantially changed our ways of dealing with media collections. Today‟s interfaces for managing digital media mainly offer fixed linear models corresponding to the underlying technical concepts (folders, events, albums, etc.), or the metaphors borrowed from the analogue counterparts (e.g., stacks, film rolls). However, people‟s mental interpretations of their media collections often go beyond the scope of linear scan. Besides explicit search with specific goals, current interfaces can not sufficiently support the explorative and often non-linear behavior. This dissertation presents an exploration of interface design to enhance the browsing experience with media collections. The main outcome of this thesis is a new model of Exploratory Browsing to guide the design of interfaces to support the full range of browsing activities, especially the Exploratory Browsing. We define Exploratory Browsing as the behavior when the user is uncertain about her or his targets and needs to discover areas of interest (exploratory), in which she or he can explore in detail and possibly find some acceptable items (browsing). According to the browsing objectives, we group browsing activities into three categories: Search Browsing, General Purpose Browsing and Serendipitous Browsing. In the context of this thesis, Exploratory Browsing refers to the latter two browsing activities, which goes beyond explicit search with specific objectives. We systematically explore the design space of interfaces to support the Exploratory Browsing experience. Applying the methodology of User-Centered Design, we develop eight prototypes, covering two main usage contexts of browsing with personal collections and in online communities. The main studied media types are photographs and music. The main contribution of this thesis lies in deepening the understanding of how people‟s exploratory behavior has an impact on the interface design. This thesis contributes to the field of interface design for media collections in several aspects. With the goal to inform the interface design to support the Exploratory Browsing experience with media collections, we present a model of Exploratory Browsing, covering the full range of exploratory activities around media collections. We investigate this model in different usage contexts and develop eight prototypes. The substantial implications gathered during the development and evaluation of these prototypes inform the further refinement of our model: We uncover the underlying transitional relations between browsing activities and discover several stimulators to encourage a fluid and effective activity transition. Based on this model, we propose a catalogue of general interface characteristics, and employ this catalogue as criteria to analyze the effectiveness of our prototypes. We also present several general suggestions for designing interfaces for media collections

    A lifelogging system supporting multimodal access

    Get PDF
    Today, technology has progressed to allow us to capture our lives digitally such as taking pictures, recording videos and gaining access to WiFi to share experiences using smartphones. People’s lifestyles are changing. One example is from the traditional memo writing to the digital lifelog. Lifelogging is the process of using digital tools to collect personal data in order to illustrate the user’s daily life (Smith et al., 2011). The availability of smartphones embedded with different sensors such as camera and GPS has encouraged the development of lifelogging. It also has brought new challenges in multi-sensor data collection, large volume data storage, data analysis and appropriate representation of lifelog data across different devices. This study is designed to address the above challenges. A lifelogging system was developed to collect, store, analyse, and display multiple sensors’ data, i.e. supporting multimodal access. In this system, the multi-sensor data (also called data streams) is firstly transmitted from smartphone to server only when the phone is being charged. On the server side, six contexts are detected namely personal, time, location, social, activity and environment. Events are then segmented and a related narrative is generated. Finally, lifelog data is presented differently on three widely used devices which are the computer, smartphone and E-book reader. Lifelogging is likely to become a well-accepted technology in the coming years. Manual logging is not possible for most people and is not feasible in the long-term. Automatic lifelogging is needed. This study presents a lifelogging system which can automatically collect multi-sensor data, detect contexts, segment events, generate meaningful narratives and display the appropriate data on different devices based on their unique characteristics. The work in this thesis therefore contributes to automatic lifelogging development and in doing so makes a valuable contribution to the development of the field

    Situated navigation support for heterogeneous large crowds via augmented signage

    Get PDF
    PhD ThesisNavigating unfamiliar places is a common problem people face, and there is a wealth of commercial and research-based applications particularly for mobile devices that provide support in these settings. While many of these solutions work well on an individual level, they are less well suited for very crowded situations, e.g. sports matches, festivals and fairs, or religious events such as pilgrimages. In a large crowd, attending to a mobile device can be hazardous, the underlying technology might not scale well, and some people might be excluded due to not having access to a mobile device. Public signage does not suffer from these issues, and consequently, people frequently rely on signage in crowded settings. However, a key disadvantage of public signage is that it does not provide personalised navigation support. We have therefore investigated augmented signage as a navigation support system for use in large crowds. This thesis investigates the issues of guidance by augmented displays and how this can be made more suitable for people who navigate in groups in unfamiliar areas. In this context we have undertaken three studies as examples to explore how augmented displays can provide aid to people in crowded places. In the first study, we investigated the question of whether the use of dynamic public signage can help pilgrims count or remember the Tawaf rounds while walking around the Ka’bah. We analysed the current situation in Mecca based on a literature review and a series of interviews with pilgrims, who had completed at least one pilgrimage (already visited Mecca). We then presented a prototypical dynamic signage and reported on a user study we conducted in a realistic setting in order to evaluate the system. The results suggest that dynamic signage may be a feasible option to improve the safety of pilgrims in Mecca. In the second study, we introduced a scalable signage-based approach and present results from a comparison study contrasting two designs for augmented signage with a base approach. The results provide evidence that such a system could be easily useable, may reduce task load, and could improve navigation performance. In the final study, we developed public displays (static and dynamic signage) and investigated the ability of using such displays to assist pilgrims of Mecca to find each other after becoming separated while performing rituals inside the Haram (e.g. Tawaf pillar). Once again here we have addressed the issue through a series of interviews with people who had experienced pilgrimage before. Then we constructed a full idea that allowed us to design the initial system and presented it in a focus group session to gain feedback and redesign the system. Afterwards, we conducted a lab-based user study. The results we obtained suggest that a person can extract information (by reading the dynamic signage), also results showed that users were able to remember their information (whilst completing some distraction tasks), and then they completed the static signs tasks successfully. Generally results showed that the system can indicate people to the right place where they can meet again after becoming separated. In general, these results provided good evidence that augmented signage supported by colour and visual codes might provide considerable help in situations with large and heterogeneous crowds. It might be developed and used in different settings for provisional navigation information and allow multi-users to extract their personalised information individually
    corecore