614,871 research outputs found

    Lecture Notes in Electrical Engineering vol. 365

    Get PDF
    This book includes the original, peer-reviewed research papers from the 2nd International Conference on Electrical Systems, Technology and Information (ICESTI 2015), held during 9–12 September 2015, at Patra Jasa Resort & Villas Bali, Indonesia. The primary objective of this book is to provide references for dissemination and discussion of the topics that have been presented in the conference. This volume is unique in that it includes work related to Electrical Engineering, Technology and Information towards their sustainable development. Engineers, researchers as well as lecturers from universities and professionals in industry and government will gain valuable insights into interdisciplinary solutions in the field of Electrical Systems, Technology and Information, and its applications. The topics of ICESTI 2015 provide a forum for accessing the most up-to-date and authoritative knowledge and the best practices in the field of Electrical Engineering, Technology and Information towards their sustainable development. The editors selected high quality papers from the conference that passed through a minimum of three reviewers, with an acceptance rate of 50.6 %. In the conference there were three invited papers from keynote speakers, whose papers are also included in this book, entitled: “Computational Intelligence based Regulation of the DC bus in the On-Grid Photovoltaic System”, “Virtual Prototyping of a Compliant Spindle for Robotic Deburring” and “A Concept of Multi Rough Sets Defined on Multi-Contextual Information Systems”. The conference also classified the technology innovation topics into five parts: “Technology Innovation in Robotics, Image Recognition and Computational Intelligence Applications”, “Technology Innovation in Electrical Engineering, Electric Vehicle and Energy Management”, “Technology Innovation in Electronic, Manufacturing, Instrumentation and Material Engineering”, “Technology Innovation in Internet of Things and Its Applications” and “Technology Innovation in Information, Modeling and Mobile Applications”

    Mobile Laser Scanning – System development, performance and applications

    Get PDF
    Osajulkaisut: Publication 1: Antero Kukko, Sanna Kaasalainen, and Paula Litkey. 2008. Effect of incidence angle on laser scanner intensity and surface data. Applied Optics, volume 47, number 7, pages 986-992. doi:10.1364/AO.47.000986 Publication 2: Antero Kukko and Juha HyyppĂ€. 2009. Small-footprint laser scanning simulator for system validation, error assessment, and algorithm development. Photogrammetric Engineering and Remote Sensing, volume 75, number 9, pages 1177-1189. Publication 3: Antero Kukko, Constantin-Octavian Andrei, Veli-Matti Salminen, Harri Kaartinen, Yuwei Chen, Petri Rönnholm, Hannu HyyppĂ€, Juha HyyppĂ€, Ruizhi Chen, Henrik HaggrĂ©n, Iisakki Kosonen, and Karel Čapek. 2007. Road environment mapping system of the Finnish Geodetic Institute - FGI ROAMER -. In: Petri Rönnholm, Hannu HyyppĂ€, and Juha HyyppĂ€ (editors). Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007. Espoo, Finland. 12-14 September 2007. International Society for Photogrammetry and Remote Sensing. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, volume 36, part 3 / W52, pages 241-247. ISSN 1682-1777. Publication 4: Antero Kukko, Harri Kaartinen, Juha HyyppĂ€, and Yuwei Chen. 2012. Multiplatform mobile laser scanning: Usability and performance. Sensors, volume 12, number 9, pages 11712-11733. doi:10.3390/s120911712 Publication 5: Harri Kaartinen, Juha HyyppĂ€, Antero Kukko, Anttoni Jaakkola, and Hannu HyyppĂ€. 2012. Benchmarking the performance of mobile laser scanning systems using a permanent test field. Sensors, volume 12, number 9, pages 12814-12835. doi:10.3390/s120912814 Publication 6: P. Alho, A. Kukko, H. HyyppĂ€, H. Kaartinen, J. HyyppĂ€, and A. Jaakkola. 2009. Application of boat-based laser scanning for river survey. Earth Surface Processes and Landforms, volume 34, number 13, pages 1831-1838. doi:10.1002/esp.1879 Publication 7: Matti Vaaja, Juha HyyppĂ€, Antero Kukko, Harri Kaartinen, Hannu HyyppĂ€, and Petteri Alho. 2011. Mapping topography changes and elevation accuracies using a mobile laser scanner. Remote Sensing, volume 3, number 3, pages 587-600. doi:10.3390/rs3030587Laser scanning is a surveying technique used for mapping topography, vegetation, urban areas and infrastructure, ice, and other targets of interest. Its application on a terrestrial mobile platform is a promising method for effectively collecting three-dimensional data for complex environments and for producing model information for location-based services necessitating rapidly collected and up-to-date data. Development of mobile laser scanning (MLS) systems for such purposes is presented in this study. Different aspects of this technology were analyzed in laboratory experiments, simulations and field tests, in order to understand their effects on the ranging, intensity and point cloud data, especially in terms of point distribution and accuracy. In order to validate the performance of the developed ROAMER and AKHKA MLS systems, various three-dimensional mapping tasks were performed during an international benchmarking test, as well as in the field in numerous projects. The results showed that the proposed systems can reliably provide accurate data. It has also been shown that the various modalities of the systems allow data acquisition in numerous application scenarios and environments not previously possible. MLS improves the data output compared to terrestrial laser scanning (TLS) and outperforms airborne laser scanning (ALS) in ranging precision and point density. As a result, MLS is well suited to fill the gap between these two previously dominant 3D data acquisition techniques.Laserkeilaus on mittaustekniikka, jota kĂ€ytetÀÀn maaston topografian kasvillisuuden, rakennettujen alueiden, infrastruktuurin, jÀÀn ja muiden kohteiden kartoitukseen. Tekniikan soveltaminen liikkuvalle alustalle on lupaava menetelmĂ€ monimuotoisten ympĂ€ristöjen tehokkaaseen kolmiulotteiseen mittaamiseen ja mallinnustiedon tuottamiseen paikkatietopalveluihin, jotka edellyttĂ€vĂ€t tiedon nopeaa hankintaa ja ajantasaisuutta. TĂ€ssĂ€ tutkimuksessa kehitettiin liikkuvia laserkeilausjĂ€rjestelmiĂ€ (MLS). Eri tekijöiden vaikutuksia etĂ€isyys- ja intensiteettihavaintoihin, pistejakaumaan ja tarkkuuteen selvitettiin laboratoriokokein, simuloimalla ja koetöin. Tutkimuksessa kehitettyjen ROAMER ja AKHKA MLS-jĂ€rjestelmien suorituskykyĂ€ kolmiulotteisen mittaustiedon tuottamiseen erilaisissa kartoitustehtĂ€vissĂ€ tutkittiin kansainvĂ€lisessĂ€ vertailututkimuksessa kaupunkitestikentĂ€n avulla, mutta lisĂ€ksi kĂ€ytĂ€nnön sovelluksissa useassa eri projektissa. Tutkimuksen tulokset osoittavat, ettĂ€ kehitetyt MLS jĂ€rjestelmĂ€t tuottavat tarkkaa tietoa luotettavasti. JĂ€rjestelmien monikĂ€yttöisyys mahdollistaa aineistonhankinnan eri sovellustapauksissa ja ympĂ€ristöissĂ€ tavalla, joka ei ole aikaisemmin ollut mahdollista. Liikkuva laserkeilaus parantaa merkittĂ€vĂ€sti mittauksen tehokkuutta maalaserkeilaukseen verrattuna, ja ylittÀÀ lentolaserkeilauksen suorituskyvyn etĂ€isyysmittauksen tarkkuudessa ja pistetiheydessĂ€. Liikkuva laserkeilaus tarjoaakin nĂ€itĂ€ kahta aikaisemmin vallitsevaa 3D-mittausteknologiaa hyvin tĂ€ydentĂ€vĂ€n kartoitusmenetelmĂ€n

    Architecture for Mobile Heterogeneous Multi Domain Networks

    Get PDF
    Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals
    • 

    corecore