73,455 research outputs found

    A comparative analysis of adaptive middleware architectures based on computational reflection and aspect oriented programming to support mobile computing applications

    Get PDF
    Mobile computing applications are required to operate in environments in which the availability for resources and services may change significantly during system operation. As a result, mobile computing applications need to be capable of adapting to these changes to offer the best possible level of service to their users. However, traditional middleware is limited in its capability of adapting to environment changes and different users requirements. Computational Reflection and Aspect Oriented Programming paradigms have been used in the design and implementation of adaptive middleware architectures. In this paper, we propose two adaptive middleware architectures, one based on reflection and other based on aspects, which can be used to develop adaptive mobile applications. The reflection based architecture is compared to an aspect oriented based architecture from a quantitative perspective. The results suggest that middleware based on Aspect Oriented Programming can be used to build mobile adaptive applications that require less processor running time and more memory space than Computational Reflection while producing code that is easier to comprehend and modify.8th IFIP/IEEE International conference on Mobile and Wireless CommunicationRed de Universidades con Carreras en Informática (RedUNCI

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    Octopus - an energy-efficient architecture for wireless multimedia systems

    Get PDF
    Multimedia computing and mobile computing are two trends that will lead to a new application domain in the near future. However, the technological challenges to establishing this paradigm of computing are non-trivial. Personal mobile computing offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The approach we made to achieve such a system is to use autonomous, adaptable modules, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules that is placed in the data streams. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies
    • …
    corecore