22 research outputs found

    Cloud Computing in Healthcare – a Literature Review on Current State of Research

    Get PDF
    Nowadays, IT resources are increasingly being used in all areas of the health sector. Cloud computing offers a promising approach to satisfy the IT needs in a favorable way. Despite numerous publications in the context of cloud computing in healthcare, there is no systematic review on current research so far. This paper addresses the gap and is aimed to identify the state of research and determine the potential areas of future research in the domain. We conduct a structured literature search based on an established framework. Through clustering of the research goals of the found papers we derive research topics including developing cloud-based applications, platforms or brokers, security and privacy mechanisms, and benefit assessments for the use of cloud computing in healthcare. We hence analyze current research results across the topics and deduce areas for future research, e.g., development, validation and improvement of proposed solutions, an evaluation framework

    Profile Management System in Ubiquitous Healthcare Cloud Computing Environment

    Get PDF
    A shift from the doctor-centric model to a patient-centric model is required to face the challenges of the healthcare sector. The vision of patient-centric model can be materialized integrating ubiquitous healthcare and the notion of personalization in services. Cloud computing can be the underlying technology for ubiquitous healthcare. The use of profiles enables the personalization in healthcare services and the use of profile management systems facilitates the deployment of these services. In this paper, we propose a profile management system in ubiquitous healthcare cloud computing environment. The proposed system exploits the cloud computing technology and the smart card technology to increase the efficiency and the quality of the provided healthcare services in the context of the patient-centric model. Furthermore, we propose generic healthcare profile structures corresponding to the main classes of the participating entities in a ubiquitous healthcare cloud computing environment

    An enhanced healthcare system in mobile cloud computing environment

    Get PDF
    Abstract Mobile cloud computing (MCC) is a new technology for mobile web services. Accordingly, we assume that MCC is likely to be of the heart of healthcare transformation. MCC offers new kinds of services and facilities for patients and caregivers. In this regard, we have tried to propose a new mobile medical web service system. To this end, we implement a medical cloud multi-agent system (MCMAS) solution for polyclinic ESSALEMA Sfax—TUNISIA, using Google's Android operating system. The developed system has been assessing using the CloudSim Simulator. This paper presents initial results of the system in practice. In fact the proposed solution shows that the MCMAS has a commanding capability to cope with the problem of traditional application. The performance of the MCMAS is compared with the traditional system in polyclinic ESSALEMA which showed that this prototype yields better recital than using usual application

    Health data in cloud environments

    Full text link
    The process of provisioning healthcare involves massive healthcare data which exists in different forms on disparate data sources and in different formats. Consequently, health information systems encounter interoperability problems at many levels. Integrating these disparate systems requires the support at all levels of a very expensive infrastructures. Cloud computing dramatically reduces the expense and complexity of managing IT systems. Business customers do not need to invest in their own costly IT infrastructure, but can delegate and deploy their services effectively to Cloud vendors and service providers. It is inevitable that electronic health records (EHRs) and healthcare-related services will be deployed on cloud platforms to reduce the cost and complexity of handling and integrating medical records while improving efficiency and accuracy. The paper presents a review of EHR including definitions, EHR file formats, structures leading to the discussion of interoperability and security issues. The paper also presents challenges that have to be addressed for realizing Cloudbased healthcare systems: data protection and big health data management. Finally, the paper presents an active data model for housing and protecting EHRs in a Cloud environment

    Achieving trust-oriented data protection in the cloud environment

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Cloud computing has gained increasing acceptance in recent years. In privacy-conscious domains such as healthcare and banking, however, data security and privacy are the greatest obstacles to the widespread adoption of cloud computing technology. Despite enjoying the benefits brought by this innovative technology, users are concerned about losing the control of their own data in the outsourced environment. Encrypting data can resolve confidentiality and integrity challenges, but the key to mitigating users’ concerns and encouraging broader adoption of cloud computing is the establishment of a trustworthy relationship between cloud providers and users. In this dissertation, we investigate a novel trust-oriented data protection framework adapted to the cloud environment. By investigating cloud data security, privacy, and control related issues, we propose a novel data protection approach that combines active and passive protection mechanisms. The active protection is used to secure data in an independent and smart data cube that can survive even when the host is in danger. The passive protection covers the actions and mechanisms taken to monitor and audit data based on third party security services such as access control services and audit services. Furthermore, by incorporating full mobility and replica management with the active and passive mechanisms, the proposed framework can satisfy confidentiality, integrity, availability, scalability, intrusion-tolerance, authentication, authorization, auditability, and accountability, increasing users’ confidence in consuming cloud-based data services. In this work we begin by introducing cloud data storage characteristics and then analyse the reasons for issues of data security, privacy and control in cloud. On the basis of results of analysis, we identify desirable properties and objectives for protecting cloud data. In principle, cryptography-based and third party based approaches are insufficient to address users’ concerns and increase confidence in consuming cloud-based data services, because of possible intrusion attacks and direct tampering of data. Hence, we propose a novel way of securing data in an active data cube (ADCu) with smart and independent functionality. Each ADCu is a deployable data protection unit encapsulating sensitive data, networking, data manipulation, and security verification functions within a coherent data structure. A sealed and signed ADCu encloses dynamic information-flow tracking throughout the data cube that can precisely monitor the inner data and the derivatives. Any violations of policy or tampering with data would be compulsorily recorded and reported to bundled users via the mechanisms within the ADCu. This active and bundled architecture is designed to establish a trustworthy relationship between cloud and users. Subsequently, to establish a more comprehensive security environment cooperating with an active data-centric (ADC) framework, we propose a cloud-based privacy-aware role-based access control (CPRBAC) service and an active auditing service (AAS). These components in the entire data protection framework contribute to the passive security mechanisms. They provide access control management and audit work based on a consistent security environment. We also discuss and implement full mobility management and data replica management related to the ADCu, which are regarded as significant factors to satisfy data accountability, availability, and scalability. We conduct a set of practical experiments and security evaluation on a mini-private cloud platform. The outcome of this research demonstrates the efficiency, feasibility, dependability, and scalability of protecting outsourced data in cloud by using the trust-oriented protection framework. To that end, we introduce an application applying the components and mechanisms of the trust-oriented security framework to protecting eHealth data in cloud. The novelty of this work lies in protecting cloud data in an ADCu that is not highly reliant on strong encryption schemes and third-party protection schemes. By proposing innovative structures, concepts, algorithms, and services, the major contribution of this thesis is that it helps cloud providers to deliver trust actively to cloud users, and encourages broader adoption of cloud-based solutions for data storage services in sensitive areas

    Mobile Cloud Support for Semantic-Enriched Speech Recognition in Social Care

    Get PDF
    Nowadays, most users carry high computing power mobile devices where speech recognition is certainly one of the main technologies available in every modern smartphone, although battery draining and application performance (resource shortage) have a big impact on the experienced quality. Shifting applications and services to the cloud may help to improve mobile user satisfaction as demonstrated by several ongoing efforts in the mobile cloud area. However, the quality of speech recognition is still not sufficient in many complex cases to replace the common hand written text, especially when prompt reaction to short-term provisioning requests is required. To address the new scenario, this paper proposes a mobile cloud infrastructure to support the extraction of semantics information from speech recognition in the Social Care domain, where carers have to speak about their patients conditions in order to have reliable notes used afterward to plan the best support. We present not only an architecture proposal, but also a real prototype that we have deployed and thoroughly assessed with different queries, accents, and in presence of load peaks, in our experimental mobile cloud Platform as a Service (PaaS) testbed based on Cloud Foundry

    Behavior life style analysis for mobile sensory data in cloud computing through MapReduce

    Get PDF
    Cloud computing has revolutionized healthcare in today's world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user's activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends

    MDA: message digest-based authentication for mobile cloud computing

    Get PDF
    corecore