15,780 research outputs found

    Fog Computing: A Taxonomy, Survey and Future Directions

    Full text link
    In recent years, the number of Internet of Things (IoT) devices/sensors has increased to a great extent. To support the computational demand of real-time latency-sensitive applications of largely geo-distributed IoT devices/sensors, a new computing paradigm named "Fog computing" has been introduced. Generally, Fog computing resides closer to the IoT devices/sensors and extends the Cloud-based computing, storage and networking facilities. In this chapter, we comprehensively analyse the challenges in Fogs acting as an intermediate layer between IoT devices/ sensors and Cloud datacentres and review the current developments in this field. We present a taxonomy of Fog computing according to the identified challenges and its key features.We also map the existing works to the taxonomy in order to identify current research gaps in the area of Fog computing. Moreover, based on the observations, we propose future directions for research

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    Exploiting Non-Causal CPU-State Information for Energy-Efficient Mobile Cooperative Computing

    Full text link
    Scavenging the idling computation resources at the enormous number of mobile devices can provide a powerful platform for local mobile cloud computing. The vision can be realized by peer-to-peer cooperative computing between edge devices, referred to as co-computing. This paper considers a co-computing system where a user offloads computation of input-data to a helper. The helper controls the offloading process for the objective of minimizing the user's energy consumption based on a predicted helper's CPU-idling profile that specifies the amount of available computation resource for co-computing. Consider the scenario that the user has one-shot input-data arrival and the helper buffers offloaded bits. The problem for energy-efficient co-computing is formulated as two sub-problems: the slave problem corresponding to adaptive offloading and the master one to data partitioning. Given a fixed offloaded data size, the adaptive offloading aims at minimizing the energy consumption for offloading by controlling the offloading rate under the deadline and buffer constraints. By deriving the necessary and sufficient conditions for the optimal solution, we characterize the structure of the optimal policies and propose algorithms for computing the policies. Furthermore, we show that the problem of optimal data partitioning for offloading and local computing at the user is convex, admitting a simple solution using the sub-gradient method. Last, the developed design approach for co-computing is extended to the scenario of bursty data arrivals at the user accounting for data causality constraints. Simulation results verify the effectiveness of the proposed algorithms.Comment: Submitted to possible journa

    Optimal association of mobile users to multi-access edge computing resources

    Get PDF
    Multi-access edge computing (MEC) plays a key role in fifth-generation (5G) networks in bringing cloud functionalities at the edge of the radio access network, in close proximity to mobile users. In this paper we focus on mobile-edge computation offloading, a way to transfer heavy demanding, and latency-critical applications from mobile handsets to close-located MEC servers, in order to reduce latency and/or energy consumption. Our goal is to provide an optimal strategy to associate mobile users to access points (AP) and MEC hosts, while contextually optimizing the allocation of radio and computational resources to each user, with the objective of minimizing the overall user transmit power under latency constraints incorporating both communication and computation times. The overall problem is a mixed-binary problem. To overcome its inherent computational complexity, we propose two alternative strategies: i) a method based on successive convex approximation (SCA) techniques, proven to converge to local optimal solutions; ii) an approach hinging on matching theory, based on formulating the assignment problem as a matching game

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201
    • …
    corecore