268 research outputs found

    Characteristics of continental rifting in rotational systems: New findings from spatiotemporal high resolution quantified crustal scale analogue models

    Get PDF
    Continental rifts are the expression of regional horizontal stretching and are in modelling studies often assumed to be the result of orthogonal or oblique extension. However, naturally occurring V-shaped rift geometries infer an underlying rotational component, resulting in a divergence velocity gradient. Here we use such analogue models of rifting in rotational settings to investigate and quantify the effect of such a divergence velocity gradient on normal fault growth and rift propagation towards a rotation pole. Particularly, we apply different divergence velocities and use different brittle-ductile ratios to simulate different crustal configurations and analyse its effect on rift propagation and surface deformation. Surface deformation is captured using stereoscopic 3D Digital Image Correlation, which allows for quantifying topographic evolution and surface displacement including vertical displacement. In combination with X-Ray computed tomography, we gain insights into the three-dimensional structures in our two-layer models. Based on our models, we present a novel characterisation of normal fault growth under rotational extension which is described by (a) an early stage of bidirectional stepwise growth in length by fault linkage with pulses of high growth rates followed by a longer and continuous stage of unidirectional linear fault growth; (b) segmented rifting activity which promotes strain partitioning among competing conjugate faults and (c) along-strike segmented migration of active faulting from boundary faults inwards to intra-rift faults allowing different fault generations to be simultaneously active over the entire rift length. For models with higher divergence velocities, inward migration is delayed but other first-order observations are similar to models with lower divergence velocities. Our quantitative analysis provides insights on spatiotemporal fault growth and rift propagation in analogue models of rotational rifting. Although natural rifts present complex systems, our models may contribute to a better understanding of natural rift evolution with a rotational component

    MoSART: Mobile Spatial Augmented Reality for 3D Interaction With Tangible Objects

    Get PDF
    In this paper we introduce MoSART, a novel approach for Mobile Spatial Augmented Reality on Tangible objects. MoSART is dedicated to mobile interaction with tangible objects in single or collaborative situations. It is based on a novel “all-in-one” Head-Mounted Display (AMD) including a projector (for the SAR display) and cameras (for the scene registration). Equipped with the HMD the user is able to move freely around tangible objects and manipulate them at will. The system tracks the position and orientation of the tangible 3D objects and projects virtual content over them. The tracking is a feature-based stereo optical tracking providing high accuracy and low latency. A projection mapping technique is used for the projection on the tangible objects which can have a complex 3D geometry. Several interaction tools have also been designed to interact with the tangible and augmented content, such as a control panel and a pointer metaphor, which can benefit as well from the MoSART projection mapping and tracking features. The possibilities offered by our novel approach are illustrated in several use cases, in single or collaborative situations, such as for virtual prototyping, training or medical visualization

    On the investigation of a novel x-ray imaging techniques in radiation oncology

    Get PDF
    Radiation therapy is indicated for nearly 50% of cancer patients in Australia. Radiation therapy requires accurate delivery of ionising radiation to the neoplastic tissue and pre-treatment in situ x-ray imaging plays an important role in meeting treatment accuracy requirements. Four dimensional cone-beam computed tomography (4D CBCT) is one such pre-treatment imaging technique that can help to visualise tumour target motion due to breathing at the time of radiation treatment delivery. Measuring and characterising the target motion can help to ensure highly accurate therapeutic x-ray beam delivery. In this thesis, a novel pre-treatment x-ray imaging technique, called Respiratory Triggered 4D cone-beam Computed Tomography (RT 4D CBCT), is conceived and investigated. Specifically, the aim of this work is to progress the 4D CBCT imaging technology by investigating the use of a patient’s breathing signal to improve and optimise the use of imaging radiation in 4D CBCT to facilitate the accurate delivery of radiation therapy. These investigations are presented in three main studies: 1. Introduction to the concept of respiratory triggered four dimensional conebeam computed tomography. 2. A simulation study exploring the behaviour of RT 4D CBCT using patientmeasured respiratory data. 3. The experimental realisation of RT 4D CBCT working in a real-time acquisitions setting. The major finding from this work is that RT 4D CBCT can provide target motion information with a 50% reduction in the x-ray imaging dose applied to the patient

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Multivariate Statistical Techniques for Accurately and Noninvasively Localizing Tumors Subject to Respiration-Induced Motion

    Get PDF
    Tumors in the lung, liver, and pancreas can move considerably with normal respiration. The tumor motion extent, path, and baseline position change over time. This creates a complex "moving target" for external beam radiation and is a major obstacle to treating cancer. Real-time tumor motion compensation systems have emerged, but device performance is limited by tumor localization accuracy. Direct tumor tracking is not feasible for these tumors, but tumor displacement can be predicted from surrogate measurements of respiration. In this dissertation, we have developed a series of multivariate statistical techniques for reliably and accurately localizing tumors from respiratory surrogate markers affixed to the torso surface. Our studies utilized radiographic tumor localizations measured concurrently with optically tracked respiratory surrogates during 176 lung, liver, and pancreas radiation treatment and dynamic MR imaging sessions. We identified measurement precision, tumor-surrogate correlation, training data selection, inter-patient variations, and algorithm design as factors impacting localization accuracy. Training data timing was particularly important, as tumor localization errors increased over time in 63% of 30-min treatments. This was a result of the changing relationship between surrogate signals and tumor motion. To account for these changes, we developed a method for detecting and correcting large localization errors. By monitoring the surrogate-to-surrogate and surrogate-to-model relationships, tumor localization errors exceeding 3 mm could be detected at a sensitivity of 95%. The method that we have proposed and validated in this dissertation leads to 69% fewer treatment interruptions than conventional respiratory surrogate model monitoring techniques. Finally, we extended respiratory surrogate-based tumor motion prediction to the otherwise time-consuming process of contouring respiratory-correlated computed tomography scans. This dissertation clarifies the scope and significance of problems underlying existing surrogate-based tumor localization models. Furthermore, it presents novel solutions that make it possible to improve radiation delivery to tumors without increasing the time required to plan and deliver radiation treatments

    Modeling and Simulation in Engineering

    Get PDF
    This book provides an open platform to establish and share knowledge developed by scholars, scientists, and engineers from all over the world, about various applications of the modeling and simulation in the design process of products, in various engineering fields. The book consists of 12 chapters arranged in two sections (3D Modeling and Virtual Prototyping), reflecting the multidimensionality of applications related to modeling and simulation. Some of the most recent modeling and simulation techniques, as well as some of the most accurate and sophisticated software in treating complex systems, are applied. All the original contributions in this book are jointed by the basic principle of a successful modeling and simulation process: as complex as necessary, and as simple as possible. The idea is to manipulate the simplifying assumptions in a way that reduces the complexity of the model (in order to make a real-time simulation), but without altering the precision of the results

    Tectonic interactions during rift linkage: insights from analog and numerical experiments

    Get PDF
    Continental rifts evolve by linkage and interaction of adjacent individual segments. As rift segments propagate, they can cause notable re-orientation of the local stress field so that stress orientations deviate from the regional trend. In return, this stress re-orientation can feed back on progressive deformation and may ultimately deflect propagating rift segments in an unexpected way. Here, we employ numerical and analog experiments of continental rifting to investigate the interaction between stress re-orientation and segment linkage. Both model types employ crustal-scale two-layer setups wherein pre-existing linear heterogeneities are introduced by mechanical weak seeds. We test various seed configurations to investigate the effect of (i) two competing rift segments that propagate unilaterally, (ii) linkage of two opposingly propagating rift segments, and (iii) the combination of these configurations on stress re-orientation and rift linkage. Both the analog and numerical models show counterintuitive rift deflection of two sub-parallel propagating rift segments competing for linkage with an opposingly propagating segment. The deflection pattern can be explained by means of stress analysis in numerical experiments wherein stress re-orientation occurs locally and propagates across the model domain as rift segments propagate. Major stress re-orientations may occur locally, which means that faults and rift segment trends do not necessarily align perpendicularly to far-field extension directions. Our results show that strain localization and stress re-orientation are closely linked, mutually influence each other, and may be an important factor for rift deflection among competing rift segments as observed in nature.</p

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Reducing Uncertainty in Head and Neck Radiotherapy with Plastic Robotics

    Get PDF
    One of the greatest challenges in achieving accurate positioning in head and neck radiotherapy is that the anatomy at and above the cervical spine does not act as a single, mechanically rigid body. Current immobilization techniques contain residual uncertainties that are especially present in the lower neck that cannot be reduced by setting up to any single landmark. The work presented describes the development of a radiotherapy friendly mostly-plastic 6D robotic platform for positioning independent landmarks, (i.e., allowing remote, independent positioning of the skull relative to landmarks in the thorax), including analysis of kinematics, stress, radiographic compatibility, trajectory planning, physical construction, and phantom measurements of correction accuracy. No major component of the system within the field of imaging or treatment had a measured attenuation value greater than 250 HU, showing compatibility with x-ray-based imaging techniques. Relative to arbitrary overall setup errors of the head (min = 1.1 mm, max = 5.2 mm vector error) the robotic platform corrected the position down to a residual overall error of 0.75 mm +/- 0.33 mm over 15 cases as measured with optical tracking. This device shows the potential for providing reductions to dose margins in head and neck therapy cases, while also reducing setup time and effort
    • …
    corecore