65,043 research outputs found

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf

    Machining feature-based system for supporting step-compliant milling process

    Get PDF
    STEP standards aims at setting up a standard description method for product data and providing a neutral exchanging mechanism that is independent of all the information processing systems for product information model. STEP Part 21 is the first implementation method from EXPRESS language and implemented successfully in CAD data. However, this text file consists of purely geometrical and topological data is hardly to be applied in machining process planning which requires machining features enriched data. The aim of this research is developing a new methodology to translate the EXPRESS language model of CAD STEP data into a new product data representation and enriched in machining features which is more beneficial to machining process planning. In this research, a target Database Management System (DBMS) was proposed for developing this system by using its fourth-generation tools that allow rapid development of applications through the provision of nonprocedural query language, reports generators, form generators, graphics generators, and application generators. The use of fourth-generation tools can improve productivity significantly and produce program that are easier to maintain. From this research, a new product data representation in a compact new table format is generated. Then this new product data representation has gone through a series of data enrichment process, such as normal face direction generation, edge convexity/concavity determination and machining features with transition feature recognition. Lastly, this new enriched product data representation is verified by generating to a new STEP standard data format which is according to ISO1030-224 standard format and providing an important part of solution for supporting STEP-compliant process planning and applications in milling process

    Proximal business intelligence on the semantic web

    Get PDF
    This is the post-print version of this article. The official version can be accessed from the link below - Copyright @ 2010 Springer.Ubiquitous information systems (UBIS) extend current Information System thinking to explicitly differentiate technology between devices and software components with relation to people and process. Adapting business data and management information to support specific user actions in context is an ongoing topic of research. Approaches typically focus on providing mechanisms to improve specific information access and transcoding but not on how the information can be accessed in a mobile, dynamic and ad-hoc manner. Although web ontology has been used to facilitate the loading of data warehouses, less research has been carried out on ontology based mobile reporting. This paper explores how business data can be modeled and accessed using the web ontology language and then re-used to provide the invisibility of pervasive access; uncovering more effective architectural models for adaptive information system strategies of this type. This exploratory work is guided in part by a vision of business intelligence that is highly distributed, mobile and fluid, adapting to sensory understanding of the underlying environment in which it operates. A proof-of concept mobile and ambient data access architecture is developed in order to further test the viability of such an approach. The paper concludes with an ontology engineering framework for systems of this type – named UBIS-ONTO

    Emerging technologies for learning (volume 2)

    Get PDF

    Revista Economica

    Get PDF

    Distributed Hybrid Simulation of the Internet of Things and Smart Territories

    Full text link
    This paper deals with the use of hybrid simulation to build and compose heterogeneous simulation scenarios that can be proficiently exploited to model and represent the Internet of Things (IoT). Hybrid simulation is a methodology that combines multiple modalities of modeling/simulation. Complex scenarios are decomposed into simpler ones, each one being simulated through a specific simulation strategy. All these simulation building blocks are then synchronized and coordinated. This simulation methodology is an ideal one to represent IoT setups, which are usually very demanding, due to the heterogeneity of possible scenarios arising from the massive deployment of an enormous amount of sensors and devices. We present a use case concerned with the distributed simulation of smart territories, a novel view of decentralized geographical spaces that, thanks to the use of IoT, builds ICT services to manage resources in a way that is sustainable and not harmful to the environment. Three different simulation models are combined together, namely, an adaptive agent-based parallel and distributed simulator, an OMNeT++ based discrete event simulator and a script-language simulator based on MATLAB. Results from a performance analysis confirm the viability of using hybrid simulation to model complex IoT scenarios.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0487
    • …
    corecore