211 research outputs found

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure

    Deep Multi Temporal Scale Networks for Human Motion Analysis

    Get PDF
    The movement of human beings appears to respond to a complex motor system that contains signals at different hierarchical levels. For example, an action such as ``grasping a glass on a table'' represents a high-level action, but to perform this task, the body needs several motor inputs that include the activation of different joints of the body (shoulder, arm, hand, fingers, etc.). Each of these different joints/muscles have a different size, responsiveness, and precision with a complex non-linearly stratified temporal dimension where every muscle has its temporal scale. Parts such as the fingers responds much faster to brain input than more voluminous body parts such as the shoulder. The cooperation we have when we perform an action produces smooth, effective, and expressive movement in a complex multiple temporal scale cognitive task. Following this layered structure, the human body can be described as a kinematic tree, consisting of joints connected. Although it is nowadays well known that human movement and its perception are characterised by multiple temporal scales, very few works in the literature are focused on studying this particular property. In this thesis, we will focus on the analysis of human movement using data-driven techniques. In particular, we will focus on the non-verbal aspects of human movement, with an emphasis on full-body movements. The data-driven methods can interpret the information in the data by searching for rules, associations or patterns that can represent the relationships between input (e.g. the human action acquired with sensors) and output (e.g. the type of action performed). Furthermore, these models may represent a new research frontier as they can analyse large masses of data and focus on aspects that even an expert user might miss. The literature on data-driven models proposes two families of methods that can process time series and human movement. The first family, called shallow models, extract features from the time series that can help the learning algorithm find associations in the data. These features are identified and designed by domain experts who can identify the best ones for the problem faced. On the other hand, the second family avoids this phase of extraction by the human expert since the models themselves can identify the best set of features to optimise the learning of the model. In this thesis, we will provide a method that can apply the multi-temporal scales property of the human motion domain to deep learning models, the only data-driven models that can be extended to handle this property. We will ask ourselves two questions: what happens if we apply knowledge about how human movements are performed to deep learning models? Can this knowledge improve current automatic recognition standards? In order to prove the validity of our study, we collected data and tested our hypothesis in specially designed experiments. Results support both the proposal and the need for the use of deep multi-scale models as a tool to better understand human movement and its multiple time-scale nature

    DH-PTAM: A Deep Hybrid Stereo Events-Frames Parallel Tracking And Mapping System

    Full text link
    This paper presents a robust approach for a visual parallel tracking and mapping (PTAM) system that excels in challenging environments. Our proposed method combines the strengths of heterogeneous multi-modal visual sensors, including stereo event-based and frame-based sensors, in a unified reference frame through a novel spatio-temporal synchronization of stereo visual frames and stereo event streams. We employ deep learning-based feature extraction and description for estimation to enhance robustness further. We also introduce an end-to-end parallel tracking and mapping optimization layer complemented by a simple loop-closure algorithm for efficient SLAM behavior. Through comprehensive experiments on both small-scale and large-scale real-world sequences of VECtor and TUM-VIE benchmarks, our proposed method (DH-PTAM) demonstrates superior performance compared to state-of-the-art methods in terms of robustness and accuracy in adverse conditions. Our implementation's research-based Python API is publicly available on GitHub for further research and development: https://github.com/AbanobSoliman/DH-PTAM.Comment: Submitted for publication in IEEE RA-

    Automated Analysis of Synchronization in Human Full-body Expressive Movement

    Get PDF
    The research presented in this thesis is focused on the creation of computational models for the study of human full-body movement in order to investigate human behavior and non-verbal communication. In particular, the research concerns the analysis of synchronization of expressive movements and gestures. Synchronization can be computed both on a single user (intra-personal), e.g., to measure the degree of coordination between the joints\u2019 velocities of a dancer, and on multiple users (inter-personal), e.g., to detect the level of coordination between multiple users in a group. The thesis, through a set of experiments and results, contributes to the investigation of both intra-personal and inter-personal synchronization applied to support the study of movement expressivity, and improve the state-of-art of the available methods by presenting a new algorithm to perform the analysis of synchronization

    Recognition and Estimation of Human Finger Pointing with an RGB Camera for Robot Directive

    Full text link
    In communication between humans, gestures are often preferred or complementary to verbal expression since the former offers better spatial referral. Finger pointing gesture conveys vital information regarding some point of interest in the environment. In human-robot interaction, a user can easily direct a robot to a target location, for example, in search and rescue or factory assistance. State-of-the-art approaches for visual pointing estimation often rely on depth cameras, are limited to indoor environments and provide discrete predictions between limited targets. In this paper, we explore the learning of models for robots to understand pointing directives in various indoor and outdoor environments solely based on a single RGB camera. A novel framework is proposed which includes a designated model termed PointingNet. PointingNet recognizes the occurrence of pointing followed by approximating the position and direction of the index finger. The model relies on a novel segmentation model for masking any lifted arm. While state-of-the-art human pose estimation models provide poor pointing angle estimation accuracy of 28deg, PointingNet exhibits mean accuracy of less than 2deg. With the pointing information, the target is computed followed by planning and motion of the robot. The framework is evaluated on two robotic systems yielding accurate target reaching

    Rule Of Thumb: Deep derotation for improved fingertip detection

    Full text link
    We investigate a novel global orientation regression approach for articulated objects using a deep convolutional neural network. This is integrated with an in-plane image derotation scheme, DeROT, to tackle the problem of per-frame fingertip detection in depth images. The method reduces the complexity of learning in the space of articulated poses which is demonstrated by using two distinct state-of-the-art learning based hand pose estimation methods applied to fingertip detection. Significant classification improvements are shown over the baseline implementation. Our framework involves no tracking, kinematic constraints or explicit prior model of the articulated object in hand. To support our approach we also describe a new pipeline for high accuracy magnetic annotation and labeling of objects imaged by a depth camera.Comment: To be published in proceedings of BMVC 201

    Semantic Graph Convolutional Networks for 3D Human Pose Regression

    Full text link
    In this paper, we study the problem of learning Graph Convolutional Networks (GCNs) for regression. Current architectures of GCNs are limited to the small receptive field of convolution filters and shared transformation matrix for each node. To address these limitations, we propose Semantic Graph Convolutional Networks (SemGCN), a novel neural network architecture that operates on regression tasks with graph-structured data. SemGCN learns to capture semantic information such as local and global node relationships, which is not explicitly represented in the graph. These semantic relationships can be learned through end-to-end training from the ground truth without additional supervision or hand-crafted rules. We further investigate applying SemGCN to 3D human pose regression. Our formulation is intuitive and sufficient since both 2D and 3D human poses can be represented as a structured graph encoding the relationships between joints in the skeleton of a human body. We carry out comprehensive studies to validate our method. The results prove that SemGCN outperforms state of the art while using 90% fewer parameters.Comment: In CVPR 2019 (13 pages including supplementary material). The code can be found at https://github.com/garyzhao/SemGC

    Relevant data representation by a Kernel-based framework

    Get PDF
    Nowadays, the analysis of a large amount of data has emerged as an issue of great interest taking increasing place in the scientific community, especially in automation, signal processing, pattern recognition, and machine learning. In this sense, the identification, description, classification, visualization, and clustering of events or patterns are important problems for engineering developments and scientific issues, such as biology, medicine, economy, artificial vision, artificial intelligence, and industrial production. Nonetheless, it is difficult to interpret the available information due to its complexity and a large amount of obtained features. In addition, the analysis of the input data requires the development of methodologies that allow to reveal the relevant behaviors of the studied process, particularly, when such signals contain hidden structures varying over a given domain, e.g., space and/or time. When the analyzed signal contains such kind of properties, directly applying signal processing and machine learning procedures without considering a suitable model that deals with both the statistical distribution and the data structure, can lead in unstable performance results. Regarding this, kernel functions appear as an alternative approach to address the aforementioned issues by providing flexible mathematical tools that allow enhancing data representation for supporting signal processing and machine learning systems. Moreover, kernelbased methods are powerful tools for developing better-performing solutions by adapting the kernel to a given problem, instead of learning data relationships from explicit raw vector representations. However, building suitable kernels requires some user prior knowledge about input data, which is not available in most of the practical cases. Furthermore, using the definitions of traditional kernel methods directly, possess a challenging estimation problem that often leads to strong simplifications that restrict the kind of representation that we can use on the data. In this study, we propose a data representation framework based on kernel methods to learn automatically relevant sample relationships in learning systems. Namely, the proposed framework is divided into five kernel-based approaches, which aim to compute relevant data representations by adapting them according to both the imposed sample relationships constraints and the learning scenario (unsupervised or supervised task). First, we develop a kernel-based representation approach that allows revealing the main input sample relations by including relevant data structures using graph-based sparse constraints. Thus, salient data structures are highlighted aiming to favor further unsupervised clustering stages. This approach can be viewed as a graph pruning strategy within a spectral clustering framework which allows enhancing both the local and global data consistencies for a given input similarity matrix. Second, we introduce a kernel-based representation methodology that captures meaningful data relations in terms of their statistical distribution. Thus, an information theoretic learning (ITL) based penalty function is introduced to estimate a kernel-based similarity that maximizes the whole information potential variability. So, we seek for a reproducing kernel Hilbert space (RKHS) that spans the widest information force magnitudes among data points to support further clustering stages. Third, an entropy-like functional on positive definite matrices based on Renyi’s definition is adapted to develop a kernel-based representation approach which considers the statistical distribution and the salient data structures. Thereby, relevant input patterns are highlighted in unsupervised learning tasks. Particularly, the introduced approach is tested as a tool to encode relevant local and global input data relationships in dimensional reduction applications. Fourth, a supervised kernel-based representation is introduced via a metric learning procedure in RKHS that takes advantage of the user-prior knowledge, when available, regarding the studied learning task. Such an approach incorporates the proposed ITL-based kernel functional estimation strategy to adapt automatically the relevant representation using both the supervised information and the input data statistical distribution. As a result, relevant sample dependencies are highlighted by weighting the input features that mostly encode the supervised learning task. Finally, a new generalized kernel-based measure is proposed by taking advantage of different RKHSs. In this way, relevant dependencies are highlighted automatically by considering the input data domain-varying behavior and the user-prior knowledge (supervised information) when available. The proposed measure is an extension of the well-known crosscorrentropy function based on Hilbert space embeddings. Throughout the study, the proposed kernel-based framework is applied to biosignal and image data as an alternative to support aided diagnosis systems and image-based object analysis. Indeed, the introduced kernel-based framework improve, in most of the cases, unsupervised and supervised learning performances, aiding researchers in their quest to process and to favor the understanding of complex dataResumen: Hoy en día, el análisis de datos se ha convertido en un tema de gran interés para la comunidad científica, especialmente en campos como la automatización, el procesamiento de señales, el reconocimiento de patrones y el aprendizaje de máquina. En este sentido, la identificación, descripción, clasificación, visualización, y la agrupación de eventos o patrones son problemas importantes para desarrollos de ingeniería y cuestiones científicas, tales como: la biología, la medicina, la economía, la visión artificial, la inteligencia artificial y la producción industrial. No obstante, es difícil interpretar la información disponible debido a su complejidad y la gran cantidad de características obtenidas. Además, el análisis de los datos de entrada requiere del desarrollo de metodologías que permitan revelar los comportamientos relevantes del proceso estudiado, en particular, cuando tales señales contienen estructuras ocultas que varían sobre un dominio dado, por ejemplo, el espacio y/o el tiempo. Cuando la señal analizada contiene este tipo de propiedades, los rendimientos pueden ser inestables si se aplican directamente técnicas de procesamiento de señales y aprendizaje automático sin tener en cuenta la distribución estadística y la estructura de datos. Al respecto, las funciones núcleo (kernel) aparecen como un enfoque alternativo para abordar las limitantes antes mencionadas, proporcionando herramientas matemáticas flexibles que mejoran la representación de los datos de entrada. Por otra parte, los métodos basados en funciones núcleo son herramientas poderosas para el desarrollo de soluciones de mejor rendimiento mediante la adaptación del núcleo de acuerdo al problema en estudio. Sin embargo, la construcción de funciones núcleo apropiadas requieren del conocimiento previo por parte del usuario sobre los datos de entrada, el cual no está disponible en la mayoría de los casos prácticos. Por otra parte, a menudo la estimación de las funciones núcleo conllevan sesgos el modelo, siendo necesario apelar a simplificaciones matemáticas que no siempre son acordes con la realidad. En este estudio, se propone un marco de representación basado en métodos núcleo para resaltar relaciones relevantes entre los datos de forma automática en sistema de aprendizaje de máquina. A saber, el marco propuesto consta de cinco enfoques núcleo, en aras de adaptar la representación de acuerdo a las relaciones impuestas sobre las muestras y sobre el escenario de aprendizaje (sin/con supervisión). En primer lugar, se desarrolla un enfoque de representación núcleo que permite revelar las principales relaciones entre muestras de entrada mediante la inclusión de estructuras relevantes utilizando restricciones basadas en modelado por grafos. Por lo tanto, las estructuras de datos más sobresalientes se destacan con el objetivo de favorecer etapas posteriores de agrupamiento no supervisado. Este enfoque puede ser visto como una estrategia de depuración de grafos dentro de un marco de agrupamiento espectral que permite mejorar las consistencias locales y globales de los datos En segundo lugar, presentamos una metodología de representación núcleo que captura relaciones significativas entre muestras en términos de su distribución estadística. De este modo, se introduce una función de costo basada en aprendizaje por teoría de la información para estimar una similitud que maximice la variabilidad del potencial de información de los datos de entrada. Así, se busca un espacio de Hilbert generado por el núcleo que contenga altas fuerzas de información entre los puntos para favorecer el agrupamiento entre los mismos. En tercer lugar, se propone un esquema de representación que incluye un funcional de entropía para matrices definidas positivas a partir de la definición de Renyi. En este sentido, se pretenden incluir la distribución estadística de las muestras y sus estructuras relevantes. Por consiguiente, los patrones de entrada pertinentes se destacan en tareas de aprendizaje sin supervisión. En particular, el enfoque introducido se prueba como una herramienta para codificar las relaciones locales y globales de los datos en tareas de reducción de dimensión. En cuarto lugar, se introduce una metodología de representación núcleo supervisada a través de un aprendizaje de métrica en el espacio de Hilbert generado por una función núcleo en aras de aprovechar el conocimiento previo del usuario con respecto a la tarea de aprendizaje. Este enfoque incorpora un funcional por teoría de información que permite adaptar automáticamente la representación utilizando tanto información supervisada y la distribución estadística de los datos de entrada. Como resultado, las dependencias entre las muestras se resaltan mediante la ponderación de las características de entrada que codifican la tarea de aprendizaje supervisado. Por último, se propone una nueva medida núcleo mediante el aprovechamiento de diferentes espacios de representación. De este modo, las dependencias más relevantes entre las muestras se resaltan automáticamente considerando el dominio de interés de los datos de entrada y el conocimiento previo del usuario (información supervisada). La medida propuesta es una extensión de la función de cross-correntropia a partir de inmersiones en espacios de Hilbert. A lo largo del estudio, el esquema propuesto se valida sobre datos relacionados con bioseñales e imágenes como una alternativa para apoyar sistemas de apoyo diagnóstico y análisis objetivo basado en imágenes. De hecho, el marco introducido permite mejorar, en la mayoría de los casos, el rendimiento de sistemas de aprendizaje supervisado y no supervisado, favoreciendo la precisión de la tarea y la interpretabilidad de los datosDoctorad

    Context-aware Human Motion Prediction

    Get PDF
    The problem of predicting human motion given a sequence of past observations is at the core of many applications in robotics and computer vision. Current state-of-the-art formulate this problem as a sequence-to-sequence task, in which a historical of 3D skeletons feeds a Recurrent Neural Network (RNN) that predicts future movements, typically in the order of 1 to 2 seconds. However, one aspect that has been obviated so far, is the fact that human motion is inherently driven by interactions with objects and/or other humans in the environment. In this paper, we explore this scenario using a novel context-aware motion prediction architecture. We use a semantic-graph model where the nodes parameterize the human and objects in the scene and the edges their mutual interactions. These interactions are iteratively learned through a graph attention layer, fed with the past observations, which now include both object and human body motions. Once this semantic graph is learned, we inject it to a standard RNN to predict future movements of the human/s and object/s. We consider two variants of our architecture, either freezing the contextual interactions in the future of updating them. A thorough evaluation in the "Whole-Body Human Motion Database" shows that in both cases, our context-aware networks clearly outperform baselines in which the context information is not considered.Comment: Accepted at CVPR2
    corecore