44 research outputs found

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    Novel Algorithms for High-Accuracy Joint Position and Orientation Estimation in 5G mmWave Systems"

    Get PDF
    We propose a method for accurate estimation of the User Equipment (UE) position and antenna orientation. For this, we exploit the sparsity of the mm-wave channel, and employ a compressive sensing approach with iterative refinement steps for accurate estimation of the channel parameters, including the departure and arrival angles as well as the time-of-arrival for each observed propagation path. Based on the estimated channel parameters, we formulate an iterative Gibbs sampler to obtain statistical descriptions for the unknown UE position and orientation along with the unknown scatterer positions, even in the absence of a Line-Of-Sight path

    A survey on 5G massive MIMO Localization

    Get PDF
    Massive antenna arrays can be used to meet the requirements of 5G, by exploiting different spatial signatures of users. This same property can also be harnessed to determine the locations of those users. In order to perform massive MIMO localization, refined channel estimation routines and localization methods have been developed. This paper provides a brief overview of this emerging field

    Millimeter-Wave MIMO-NOMA based Positioning System for Internet of Things Applications

    Get PDF

    Error Bounds for Uplink and Downlink 3D Localization in 5G mmWave Systems

    Get PDF
    Location-aware communication systems are expected to play a pivotal part in the next generation of mobile communication networks. Therefore, there is a need to understand the localization limits in these networks, particularly, using millimeter-wave technology (mmWave). Towards that, we address the uplink and downlink localization limits in terms of 3D position and orientation error bounds for mmWave multipath channels. We also carry out a detailed analysis of the dependence of the bounds of different systems parameters. Our key findings indicate that the uplink and downlink behave differently in two distinct ways. First of all, the error bounds have different scaling factors with respect to the number of antennas in the uplink and downlink. Secondly, uplink localization is sensitive to the orientation angle of the user equipment (UE), whereas downlink is not. Moreover, in the considered outdoor scenarios, the non-line-of-sight paths generally improve localization when a line-of-sight path exists. Finally, our numerical results show that mmWave systems are capable of localizing a UE with sub-meter position error, and sub-degree orientation error.Comment: This manuscripts is updated following two rounds of reviews at IEEE Transactions on Wireless Communications. More discussion is included in different parts of the paper. Results are unchanged, and are still vali

    MmWave V2V Localization in MU-MIMO Hybrid Beamforming

    Get PDF
    Recent trends for vehicular localization in millimetre-wave (mmWave) channels include employing a combination of parameters such as angle of arrival (AOA), angle of departure (AOD), and time of arrival (TOA) of the transmitted/received signals. These parameters are challenging to estimate, which along with the scattering and random nature of mmWave channels, and vehicle mobility lead to errors in localization. To circumvent these challenges, this paper proposes mmWave vehicular localization employing difference of arrival for time and frequency, with multiuser (MU) multiple-input-multiple-output (MIMO) hybrid beamforming; rather than relying on AOD/AOA/TOA estimates. The vehicular localization can exploit the number of vehicles present, as an increase in a number of vehicles reduces the Cramr-Rao bound (CRB) of error estimation. At 10 dB signal-to-noise ratio (SNR) both spatial multiplexing and beamforming result in comparable localization errors. At lower SNR values, spatial multiplexing leads to larger errors compared to beamforming due to formation of spurious peaks in the cross ambiguity function. Accuracy of the estimated parameters is improved by employing an extended Kalman filter leading to a root mean square (RMS) localization error of approximately 6.3 meters

    mmWave V2V Localization in MU-MIMO Hybrid Beamforming

    Get PDF
    Recent trends for vehicular localization in millimetre-wave (mmWave) channels include employing a combination of parameters such as angle of arrival (AOA), angle of departure (AOD), and time of arrival (TOA) of the transmitted/received signals. These parameters are challenging to estimate, which along with the scattering and random nature of mmWave channels, and vehicle mobility lead to errors in localization. To circumvent these challenges, this paper proposes mmWave vehicular localization employing difference of arrival for time and frequency, with multiuser (MU) multiple-input-multiple-output (MIMO) hybrid beamforming; rather than relying on AOD/AOA/TOA estimates. The vehicular localization can exploit the number of vehicles present, as an increase in a number of vehicles reduces the Cramr-Rao bound (CRB) of error estimation. At 10 dB signal-to-noise ratio (SNR) both spatial multiplexing and beamforming result in comparable localization errors. At lower SNR values, spatial multiplexing leads to larger errors compared to beamforming due to formation of spurious peaks in the cross ambiguity function. Accuracy of the estimated parameters is improved by employing an extended Kalman filter leading to a root mean square (RMS) localization error of approximately 6.3 meters
    corecore