231 research outputs found

    Dynamic Mixture of Finite Mixtures of Factor Analysers with Automatic Inference on the Number of Clusters and Factors

    Full text link
    Mixtures of factor analysers (MFA) models represent a popular tool for finding structure in data, particularly high-dimensional data. While in most applications the number of clusters, and especially the number of latent factors within clusters, is mostly fixed in advance, in the recent literature models with automatic inference on both the number of clusters and latent factors have been introduced. The automatic inference is usually done by assigning a nonparametric prior and allowing the number of clusters and factors to potentially go to infinity. The MCMC estimation is performed via an adaptive algorithm, in which the parameters associated with the redundant factors are discarded as the chain moves. While this approach has clear advantages, it also bears some significant drawbacks. Running a separate factor-analytical model for each cluster involves matrices of changing dimensions, which can make the model and programming somewhat cumbersome. In addition, discarding the parameters associated with the redundant factors could lead to a bias in estimating cluster covariance matrices. At last, identification remains problematic for infinite factor models. The current work contributes to the MFA literature by providing for the automatic inference on the number of clusters and the number of cluster-specific factors while keeping both cluster and factor dimensions finite. This allows us to avoid many of the aforementioned drawbacks of the infinite models. For the automatic inference on the cluster structure, we employ the dynamic mixture of finite mixtures (MFM) model. Automatic inference on cluster-specific factors is performed by assigning an exchangeable shrinkage process (ESP) prior to the columns of the factor loading matrices. The performance of the model is demonstrated on several benchmark data sets as well as real data applications

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.

    Get PDF
    BackgroundSingle-cell transcriptomics allows researchers to investigate complex communities of heterogeneous cells. It can be applied to stem cells and their descendants in order to chart the progression from multipotent progenitors to fully differentiated cells. While a variety of statistical and computational methods have been proposed for inferring cell lineages, the problem of accurately characterizing multiple branching lineages remains difficult to solve.ResultsWe introduce Slingshot, a novel method for inferring cell lineages and pseudotimes from single-cell gene expression data. In previously published datasets, Slingshot correctly identifies the biological signal for one to three branching trajectories. Additionally, our simulation study shows that Slingshot infers more accurate pseudotimes than other leading methods.ConclusionsSlingshot is a uniquely robust and flexible tool which combines the highly stable techniques necessary for noisy single-cell data with the ability to identify multiple trajectories. Accurate lineage inference is a critical step in the identification of dynamic temporal gene expression

    Bayesian Computation of the Intrinsic Structure of Factor Analytic Models

    Get PDF
    The study of factor analytic models often has to address two important issues: (a) the determination of the “optimum” number of factors and (b) the derivation of a unique simple structure whose interpretation is easy and straightforward. The classical approach deals with these two tasks separately, and sometimes resorts to ad-hoc methods. This paper proposes a Bayesian approach to these two important issues, and adapts ideas from stochastic geometry and Bayesian finite mixture modelling to construct an ergodic Markov chain having the posterior distribution of the complete collection of parameters (including the number of factors) as its equilibrium distribution. The proposed method uses an Automatic Relevance Determination (ARD) prior as the device of achieving the desired simple structure. A Gibbs sampler updating scheme is then combined with the simulation of a continuous-time birth-and-death point process to produce a sampling scheme that efficiently explores the posterior distribution of interest. The MCMC sample path obtained from the simulated posterior then provides a flexible ingredient for most of the inferential tasks of interest. Illustrations on both artificial and real tasks are provided, while major difficulties and challenges are discussed, along with ideas for future improvements

    Deep mixture of linear mixed models for complex longitudinal data

    Full text link
    Mixtures of linear mixed models are widely used for modelling longitudinal data for which observation times differ between subjects. In typical applications, temporal trends are described using a basis expansion, with basis coefficients treated as random effects varying by subject. Additional random effects can describe variation between mixture components, or other known sources of variation in complex experimental designs. A key advantage of these models is that they provide a natural mechanism for clustering, which can be helpful for interpretation in many applications. Current versions of mixtures of linear mixed models are not specifically designed for the case where there are many observations per subject and a complex temporal trend, which requires a large number of basis functions to capture. In this case, the subject-specific basis coefficients are a high-dimensional random effects vector, for which the covariance matrix is hard to specify and estimate, especially if it varies between mixture components. To address this issue, we consider the use of recently-developed deep mixture of factor analyzers models as the prior for the random effects. The resulting deep mixture of linear mixed models is well-suited to high-dimensional settings, and we describe an efficient variational inference approach to posterior computation. The efficacy of the method is demonstrated on both real and simulated data

    Modelling multivariate disease rates with a latent structure mixture model

    Get PDF
    Copyright © 2013 SAGE / Statistical Modeling SocietyThere has been considerable recent interest in multivariate modelling of the geographical distribution of morbidity or mortality rates for potentially related diseases. The motivations for this include investigation of similarities or dissimilarities in the risk distribution for the different diseases, as well as ‘borrowing strength’ across disease rates to shrink the uncertainty in geographical risk assessment for any particular disease. A number of approaches to such multivariate modelling have been suggested and this paper proposes an extension to these which may provide a richer range of dependency structures than those encompassed so far. We develop a model which incorporates a discrete mixture of latent structures and argue that this provides potential to represent an enhanced range of correlation structures between diseases at the same time as implicitly allowing for less restrictive spatial correlation structures between geographical units. We compare and contrast our approach to other commonly used multivariate disease models and demonstrate comparative results using data taken from cancer registries on four carcinomas in some 300 geographical units in England, Scotland and Wales

    Mixtures of Shifted Asymmetric Laplace Distributions

    Full text link
    A mixture of shifted asymmetric Laplace distributions is introduced and used for clustering and classification. A variant of the EM algorithm is developed for parameter estimation by exploiting the relationship with the general inverse Gaussian distribution. This approach is mathematically elegant and relatively computationally straightforward. Our novel mixture modelling approach is demonstrated on both simulated and real data to illustrate clustering and classification applications. In these analyses, our mixture of shifted asymmetric Laplace distributions performs favourably when compared to the popular Gaussian approach. This work, which marks an important step in the non-Gaussian model-based clustering and classification direction, concludes with discussion as well as suggestions for future work
    • 

    corecore