8,176 research outputs found

    An Empirical Evaluation of Zero Resource Acoustic Unit Discovery

    Full text link
    Acoustic unit discovery (AUD) is a process of automatically identifying a categorical acoustic unit inventory from speech and producing corresponding acoustic unit tokenizations. AUD provides an important avenue for unsupervised acoustic model training in a zero resource setting where expert-provided linguistic knowledge and transcribed speech are unavailable. Therefore, to further facilitate zero-resource AUD process, in this paper, we demonstrate acoustic feature representations can be significantly improved by (i) performing linear discriminant analysis (LDA) in an unsupervised self-trained fashion, and (ii) leveraging resources of other languages through building a multilingual bottleneck (BN) feature extractor to give effective cross-lingual generalization. Moreover, we perform comprehensive evaluations of AUD efficacy on multiple downstream speech applications, and their correlated performance suggests that AUD evaluations are feasible using different alternative language resources when only a subset of these evaluation resources can be available in typical zero resource applications.Comment: 5 pages, 1 figure; Accepted for publication at ICASSP 201

    Sketching for Large-Scale Learning of Mixture Models

    Get PDF
    Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a "compressive learning" framework where we estimate model parameters from a sketch of the training data. This sketch is a collection of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set, and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical Expectation-Maximization (EM) technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over 10 8 training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive information preservation guarantees, in the spirit of infinite-dimensional compressive sensing

    Semi-supervised model-based clustering with controlled clusters leakage

    Full text link
    In this paper, we focus on finding clusters in partially categorized data sets. We propose a semi-supervised version of Gaussian mixture model, called C3L, which retrieves natural subgroups of given categories. In contrast to other semi-supervised models, C3L is parametrized by user-defined leakage level, which controls maximal inconsistency between initial categorization and resulting clustering. Our method can be implemented as a module in practical expert systems to detect clusters, which combine expert knowledge with true distribution of data. Moreover, it can be used for improving the results of less flexible clustering techniques, such as projection pursuit clustering. The paper presents extensive theoretical analysis of the model and fast algorithm for its efficient optimization. Experimental results show that C3L finds high quality clustering model, which can be applied in discovering meaningful groups in partially classified data

    Group invariance principles for causal generative models

    Full text link
    The postulate of independence of cause and mechanism (ICM) has recently led to several new causal discovery algorithms. The interpretation of independence and the way it is utilized, however, varies across these methods. Our aim in this paper is to propose a group theoretic framework for ICM to unify and generalize these approaches. In our setting, the cause-mechanism relationship is assessed by comparing it against a null hypothesis through the application of random generic group transformations. We show that the group theoretic view provides a very general tool to study the structure of data generating mechanisms with direct applications to machine learning.Comment: 16 pages, 6 figure
    • 

    corecore