9,371 research outputs found

    Score Function Features for Discriminative Learning: Matrix and Tensor Framework

    Get PDF
    Feature learning forms the cornerstone for tackling challenging learning problems in domains such as speech, computer vision and natural language processing. In this paper, we consider a novel class of matrix and tensor-valued features, which can be pre-trained using unlabeled samples. We present efficient algorithms for extracting discriminative information, given these pre-trained features and labeled samples for any related task. Our class of features are based on higher-order score functions, which capture local variations in the probability density function of the input. We establish a theoretical framework to characterize the nature of discriminative information that can be extracted from score-function features, when used in conjunction with labeled samples. We employ efficient spectral decomposition algorithms (on matrices and tensors) for extracting discriminative components. The advantage of employing tensor-valued features is that we can extract richer discriminative information in the form of an overcomplete representations. Thus, we present a novel framework for employing generative models of the input for discriminative learning.Comment: 29 page

    Regenerative Simulation for Queueing Networks with Exponential or Heavier Tail Arrival Distributions

    Full text link
    Multiclass open queueing networks find wide applications in communication, computer and fabrication networks. Often one is interested in steady-state performance measures associated with these networks. Conceptually, under mild conditions, a regenerative structure exists in multiclass networks, making them amenable to regenerative simulation for estimating the steady-state performance measures. However, typically, identification of a regenerative structure in these networks is difficult. A well known exception is when all the interarrival times are exponentially distributed, where the instants corresponding to customer arrivals to an empty network constitute a regenerative structure. In this paper, we consider networks where the interarrival times are generally distributed but have exponential or heavier tails. We show that these distributions can be decomposed into a mixture of sums of independent random variables such that at least one of the components is exponentially distributed. This allows an easily implementable embedded regenerative structure in the Markov process. We show that under mild conditions on the network primitives, the regenerative mean and standard deviation estimators are consistent and satisfy a joint central limit theorem useful for constructing asymptotically valid confidence intervals. We also show that amongst all such interarrival time decompositions, the one with the largest mean exponential component minimizes the asymptotic variance of the standard deviation estimator.Comment: A preliminary version of this paper will appear in Proceedings of Winter Simulation Conference, Washington, DC, 201
    • …
    corecore