69 research outputs found

    Motif counting beyond five nodes

    Get PDF
    Counting graphlets is a well-studied problem in graph mining and social network analysis. Recently, several papers explored very simple and natural algorithms based on Monte Carlo sampling of Markov Chains (MC), and reported encouraging results. We show, perhaps surprisingly, that such algorithms are outperformed by color coding (CC) [2], a sophisticated algorithmic technique that we extend to the case of graphlet sampling and for which we prove strong statistical guarantees. Our computational experiments on graphs with millions of nodes show CC to be more accurate than MC; furthermore, we formally show that the mixing time of the MC approach is too high in general, even when the input graph has high conductance. All this comes at a price however. While MC is very efficient in terms of space, CC’s memory requirements become demanding when the size of the input graph and that of the graphlets grow. And yet, our experiments show that CC can push the limits of the state-of-the-art, both in terms of the size of the input graph and of that of the graphlets

    Estimating Graphlet Statistics via Lifting

    Full text link
    Exploratory analysis over network data is often limited by the ability to efficiently calculate graph statistics, which can provide a model-free understanding of the macroscopic properties of a network. We introduce a framework for estimating the graphlet count---the number of occurrences of a small subgraph motif (e.g. a wedge or a triangle) in the network. For massive graphs, where accessing the whole graph is not possible, the only viable algorithms are those that make a limited number of vertex neighborhood queries. We introduce a Monte Carlo sampling technique for graphlet counts, called {\em Lifting}, which can simultaneously sample all graphlets of size up to kk vertices for arbitrary kk. This is the first graphlet sampling method that can provably sample every graphlet with positive probability and can sample graphlets of arbitrary size kk. We outline variants of lifted graphlet counts, including the ordered, unordered, and shotgun estimators, random walk starts, and parallel vertex starts. We prove that our graphlet count updates are unbiased for the true graphlet count and have a controlled variance for all graphlets. We compare the experimental performance of lifted graphlet counts to the state-of-the art graphlet sampling procedures: Waddling and the pairwise subgraph random walk

    Fast and Perfect Sampling of Subgraphs and Polymer Systems

    Get PDF
    We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or graphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with a carefully chosen rejection filter and works under a percolation subcriticality condition. We show that this condition is optimal in the sense that the task of (approximately) sampling weighted rooted graphlets becomes impossible in finite expected time for infinite graphs and intractable for finite graphs when the condition does not hold. We apply our sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms for polymer models and weighted non-rooted graphlets in finite graphs, two widely studied yet very different problems. This new perfect sampling algorithm for polymer models gives improved sampling algorithms for spin systems at low temperatures on expander graphs and unbalanced bipartite graphs, among other applications
    • …
    corecore