7 research outputs found

    Analyse statique/dynamique pour la validation et l'amélioration des applications parallèles multi-modèles

    Get PDF
    Supercomputing plays an important role in several innovative fields, speeding up prototyping or validating scientific theories. However, supercomputers are evolving rapidly with now millions of processing units, posing the questions of their programmability. Despite the emergence of more widespread and functional parallel programming models, developing correct and effective parallel applications still remains a complex task. Although debugging solutions have emerged to address this issue, they often come with restrictions. However programming model evolutions stress the requirement for a convenient validation tool able to handle hybrid applications. Indeed as current scientific applications mainly rely on the Message Passing Interface (MPI) parallel programming model, new hardwares designed for Exascale with higher node-level parallelism clearly advocate for an MPI+X solutions with X a thread-based model such as OpenMP. But integrating two different programming models inside the same application can be error-prone leading to complex bugs - mostly detected unfortunately at runtime. In an MPI+X program not only the correctness of MPI should be ensured but also its interactions with the multi-threaded model, for example identical MPI collective operations cannot be performed by multiple nonsynchronized threads. This thesis aims at developing a combination of static and dynamic analysis to enable an early verification of hybrid HPC applications. The first pass statically verifies the thread level required by an MPI+OpenMP application and outlines execution paths leading to potential deadlocks. Thanks to this analysis, the code is selectively instrumented, displaying an error and synchronously interrupting all processes if the actual scheduling leads to a deadlock situation.L’utilisation du parallélisme des architectures actuelles dans le domaine du calcul hautes performances, oblige à recourir à différents langages parallèles. Ainsi, l’utilisation conjointe de MPI pour le parallélisme gros grain, à mémoire distribuée et OpenMP pour du parallélisme de thread, fait partie des pratiques de développement d’applications pour supercalculateurs. Des erreurs, liées à l’utilisation conjointe de ces langages de parallélisme, sont actuellement difficiles à détecter et cela limite l’écriture de codes, permettant des interactions plus poussées entre ces niveaux de parallélisme. Des outils ont été proposés afin de palier ce problème. Cependant, ces outils sont généralement focalisés sur un type de modèle et permettent une vérification dite statique (à la compilation) ou dynamique (à l’exécution). Pourtant une combinaison statique/- dynamique donnerait des informations plus pertinentes. En effet, le compilateur est en mesure de donner des informations relatives au comportement général du code, indépendamment du jeu d’entrée. C’est par exemple le cas des problèmes liés aux communications collectives du modèle MPI. Cette thèse a pour objectif de développer des analyses statiques/dynamiques permettant la vérification d’une application parallèle mélangeant plusieurs modèles de programmation, afin de diriger les développeurs vers un code parallèle multi-modèles correct et performant. La vérification se fait en deux étapes. Premièrement, de potentielles erreurs sont détectées lors de la phase de compilation. Ensuite, un test au runtime est ajouté pour savoir si le problème va réellement se produire. Grâce à ces analyses combinées, nous renvoyons des messages précis aux utilisateurs et évitons les situations de blocage

    Proceedings of the 7th International Conference on PGAS Programming Models

    Get PDF

    Simulating the nonlinear QED vacuum

    Get PDF

    ACiS: smart switches with application-level acceleration

    Full text link
    Network performance has contributed fundamentally to the growth of supercomputing over the past decades. In parallel, High Performance Computing (HPC) peak performance has depended, first, on ever faster/denser CPUs, and then, just on increasing density alone. As operating frequency, and now feature size, have levelled off, two new approaches are becoming central to achieving higher net performance: configurability and integration. Configurability enables hardware to map to the application, as well as vice versa. Integration enables system components that have generally been single function-e.g., a network to transport data—to have additional functionality, e.g., also to operate on that data. More generally, integration enables compute-everywhere: not just in CPU and accelerator, but also in network and, more specifically, the communication switches. In this thesis, we propose four novel methods of enhancing HPC performance through Advanced Computing in the Switch (ACiS). More specifically, we propose various flexible and application-aware accelerators that can be embedded into or attached to existing communication switches to improve the performance and scalability of HPC and Machine Learning (ML) applications. We follow a modular design discipline through introducing composable plugins to successively add ACiS capabilities. In the first work, we propose an inline accelerator to communication switches for user-definable collective operations. MPI collective operations can often be performance killers in HPC applications; we seek to solve this bottleneck by offloading them to reconfigurable hardware within the switch itself. We also introduce a novel mechanism that enables the hardware to support MPI communicators of arbitrary shape and that is scalable to very large systems. In the second work, we propose a look-aside accelerator for communication switches that is capable of processing packets at line-rate. Functions requiring loops and states are addressed in this method. The proposed in-switch accelerator is based on a RISC-V compatible Coarse Grained Reconfigurable Arrays (CGRAs). To facilitate usability, we have developed a framework to compile user-provided C/C++ codes to appropriate back-end instructions for configuring the accelerator. In the third work, we extend ACiS to support fused collectives and the combining of collectives with map operations. We observe that there is an opportunity of fusing communication (collectives) with computation. Since the computation can vary for different applications, ACiS support should be programmable in this method. In the fourth work, we propose that switches with ACiS support can control and manage the execution of applications, i.e., that the switch be an active device with decision-making capabilities. Switches have a central view of the network; they can collect telemetry information and monitor application behavior and then use this information for control, decision-making, and coordination of nodes. We evaluate the feasibility of ACiS through extensive RTL-based simulation as well as deployment in an open-access cloud infrastructure. Using this simulation framework, when considering a Graph Convolutional Network (GCN) application as a case study, a speedup of on average 3.4x across five real-world datasets is achieved on 24 nodes compared to a CPU cluster without ACiS capabilities

    Design and Evaluation of Low-Latency Communication Middleware on High Performance Computing Systems

    Get PDF
    [Resumen]El interés en Java para computación paralela está motivado por sus interesantes características, tales como su soporte multithread, portabilidad, facilidad de aprendizaje,alta productividad y el aumento significativo en su rendimiento omputacional. No obstante, las aplicaciones paralelas en Java carecen generalmente de mecanismos de comunicación eficientes, los cuales utilizan a menudo protocolos basados en sockets incapaces de obtener el máximo provecho de las redes de baja latencia, obstaculizando la adopción de Java en computación de altas prestaciones (High Per- formance Computing, HPC). Esta Tesis Doctoral presenta el diseño, implementación y evaluación de soluciones de comunicación en Java que superan esta limitación. En consecuencia, se desarrollaron múltiples dispositivos de comunicación a bajo nivel para paso de mensajes en Java (Message-Passing in Java, MPJ) que aprovechan al máximo el hardware de red subyacente mediante operaciones de acceso directo a memoria remota que proporcionan comunicaciones de baja latencia. También se incluye una biblioteca de paso de mensajes en Java totalmente funcional, FastMPJ, en la cual se integraron los dispositivos de comunicación. La evaluación experimental ha mostrado que las primitivas de comunicación de FastMPJ son competitivas en comparación con bibliotecas nativas, aumentando significativamente la escalabilidad de aplicaciones MPJ. Por otro lado, esta Tesis analiza el potencial de la computación en la nube (cloud computing) para HPC, donde el modelo de distribución de infraestructura como servicio (Infrastructure as a Service, IaaS) emerge como una alternativa viable a los sistemas HPC tradicionales. La evaluación del rendimiento de recursos cloud específicos para HPC del proveedor líder, Amazon EC2, ha puesto de manifiesto el impacto significativo que la virtualización impone en la red, impidiendo mover las aplicaciones intensivas en comunicaciones a la nube. La clave reside en un soporte de virtualización apropiado, como el acceso directo al hardware de red, junto con las directrices para la optimización del rendimiento sugeridas en esta Tesis.[Resumo]O interese en Java para computación paralela está motivado polas súas interesantes características, tales como o seu apoio multithread, portabilidade, facilidade de aprendizaxe, alta produtividade e o aumento signi cativo no seu rendemento computacional. No entanto, as aplicacións paralelas en Java carecen xeralmente de mecanismos de comunicación e cientes, os cales adoitan usar protocolos baseados en sockets que son incapaces de obter o máximo proveito das redes de baixa latencia, obstaculizando a adopción de Java na computación de altas prestacións (High Performance Computing, HPC). Esta Tese de Doutoramento presenta o deseño, implementaci ón e avaliación de solucións de comunicación en Java que superan esta limitación. En consecuencia, desenvolvéronse múltiples dispositivos de comunicación a baixo nivel para paso de mensaxes en Java (Message-Passing in Java, MPJ) que aproveitan ao máaximo o hardware de rede subxacente mediante operacións de acceso directo a memoria remota que proporcionan comunicacións de baixa latencia. Tamén se inclúe unha biblioteca de paso de mensaxes en Java totalmente funcional, FastMPJ, na cal foron integrados os dispositivos de comunicación. A avaliación experimental amosou que as primitivas de comunicación de FastMPJ son competitivas en comparación con bibliotecas nativas, aumentando signi cativamente a escalabilidade de aplicacións MPJ. Por outra banda, esta Tese analiza o potencial da computación na nube (cloud computing) para HPC, onde o modelo de distribución de infraestrutura como servizo (Infrastructure as a Service, IaaS) xorde como unha alternativa viable aos sistemas HPC tradicionais. A ampla avaliación do rendemento de recursos cloud específi cos para HPC do proveedor líder, Amazon EC2, puxo de manifesto o impacto signi ficativo que a virtualización impón na rede, impedindo mover as aplicacións intensivas en comunicacións á nube. A clave atópase no soporte de virtualización apropiado, como o acceso directo ao hardware de rede, xunto coas directrices para a optimización do rendemento suxeridas nesta Tese.[Abstract]The use of Java for parallel computing is becoming more promising owing to its appealing features, particularly its multithreading support, portability, easy-tolearn properties, high programming productivity and the noticeable improvement in its computational performance. However, parallel Java applications generally su er from inefficient communication middleware, most of which use socket-based protocols that are unable to take full advantage of high-speed networks, hindering the adoption of Java in the High Performance Computing (HPC) area. This PhD Thesis presents the design, development and evaluation of scalable Java communication solutions that overcome these constraints. Hence, we have implemented several lowlevel message-passing devices that fully exploit the underlying network hardware while taking advantage of Remote Direct Memory Access (RDMA) operations to provide low-latency communications. Moreover, we have developed a productionquality Java message-passing middleware, FastMPJ, in which the devices have been integrated seamlessly, thus allowing the productive development of Message-Passing in Java (MPJ) applications. The performance evaluation has shown that FastMPJ communication primitives are competitive with native message-passing libraries, improving signi cantly the scalability of MPJ applications. Furthermore, this Thesis has analyzed the potential of cloud computing towards spreading the outreach of HPC, where Infrastructure as a Service (IaaS) o erings have emerged as a feasible alternative to traditional HPC systems. Several cloud resources from the leading IaaS provider, Amazon EC2, which speci cally target HPC workloads, have been thoroughly assessed. The experimental results have shown the signi cant impact that virtualized environments still have on network performance, which hampers porting communication-intensive codes to the cloud. The key is the availability of the proper virtualization support, such as the direct access to the network hardware, along with the guidelines for performance optimization suggested in this Thesis

    Extreme-scale computing and studies of intermittency, mixing of passive scalars and stratified flows in turbulence

    Get PDF
    Turbulent flows are known for the intermittent occurrence of intense strain rates and local rotation, and for its ability to provide efficient mixing. This thesis focuses on pursuing fundamental advances in physical understanding, using high-resolution Direct Numerical Simulations based on a Fourier pseudo-spectral approach. The computations are very demanding, while ever-larger simulations are required for studies of intermittency, where high Reynolds number and good small-scale resolution are important. A new batched asynchronous algorithm capable of extremely large problem sizes has been developed for dense node heterogeneous architecture machines like Summit. Optimizing data copies between CPU and GPU and communication over the network while overlapping data copies and computations are key to achieving good performance. Processing data residing on the larger CPU memory in batches on the GPU helps avoids limitations on problem size. Favorable performance is obtained up to a world-leading problem size of 18432^3 (over 6 trillion grid points) on 3072 Summit nodes. A more portable implementation using OpenMP is pursued to target 32768^3 problem size on the exascale machine Frontier expected in early 2022. Hero-sized simulations are often relatively short in time, which raises concerns regarding sampling and statistical independence. A Multiple Resolution Independent Simulations approach (MRIS) is developed to address this issue, via multiple short simulation segments evolving from lower-resolution datasets distributed over a longer physical time span. Using this approach, the effects of small-scale intermittency are studied through statistics of local averages of dissipation rate and enstrophy. The dissipation rate is further studied from a multifractal viewpoint. The MRIS approach is also used to study passive scalar intermittency and test for refined similarity hypothesis, through statistics of scalar dissipation rate at high Reynolds number. Lastly, density stratified flows are studied under both stable and unstable stratification, with anisotropy development studied through the Reynolds-stress budget.Ph.D
    corecore