1,563 research outputs found

    High-Dimensional Expanders from Expanders

    Get PDF
    We present an elementary way to transform an expander graph into a simplicial complex where all high order random walks have a constant spectral gap, i.e., they converge rapidly to the stationary distribution. As an upshot, we obtain new constructions, as well as a natural probabilistic model to sample constant degree high-dimensional expanders. In particular, we show that given an expander graph G, adding self loops to G and taking the tensor product of the modified graph with a high-dimensional expander produces a new high-dimensional expander. Our proof of rapid mixing of high order random walks is based on the decomposable Markov chains framework introduced by [Jerrum et al., 2004]

    High Dimensional Random Walks and Colorful Expansion

    Get PDF
    Random walks on bounded degree expander graphs have numerous applications, both in theoretical and practical computational problems. A key property of these walks is that they converge rapidly to their stationary distribution. In this work we {\em define high order random walks}: These are generalizations of random walks on graphs to high dimensional simplicial complexes, which are the high dimensional analogues of graphs. A simplicial complex of dimension dd has vertices, edges, triangles, pyramids, up to dd-dimensional cells. For any 0≤i<d0 \leq i < d, a high order random walk on dimension ii moves between neighboring ii-faces (e.g., edges) of the complex, where two ii-faces are considered neighbors if they share a common (i+1)(i+1)-face (e.g., a triangle). The case of i=0i=0 recovers the well studied random walk on graphs. We provide a {\em local-to-global criterion} on a complex which implies {\em rapid convergence of all high order random walks} on it. Specifically, we prove that if the 11-dimensional skeletons of all the links of a complex are spectral expanders, then for {\em all} 0≤i<d0 \le i < d the high order random walk on dimension ii converges rapidly to its stationary distribution. We derive our result through a new notion of high dimensional combinatorial expansion of complexes which we term {\em colorful expansion}. This notion is a natural generalization of combinatorial expansion of graphs and is strongly related to the convergence rate of the high order random walks. We further show an explicit family of {\em bounded degree} complexes which satisfy this criterion. Specifically, we show that Ramanujan complexes meet this criterion, and thus form an explicit family of bounded degree high dimensional simplicial complexes in which all of the high order random walks converge rapidly to their stationary distribution.Comment: 27 page

    Explicit expanders with cutoff phenomena

    Full text link
    The cutoff phenomenon describes a sharp transition in the convergence of an ergodic finite Markov chain to equilibrium. Of particular interest is understanding this convergence for the simple random walk on a bounded-degree expander graph. The first example of a family of bounded-degree graphs where the random walk exhibits cutoff in total-variation was provided only very recently, when the authors showed this for a typical random regular graph. However, no example was known for an explicit (deterministic) family of expanders with this phenomenon. Here we construct a family of cubic expanders where the random walk from a worst case initial position exhibits total-variation cutoff. Variants of this construction give cubic expanders without cutoff, as well as cubic graphs with cutoff at any prescribed time-point.Comment: 17 pages, 2 figure

    Hypergraph expanders from Cayley graphs

    Get PDF
    We present a simple mechanism, which can be randomised, for constructing sparse 33-uniform hypergraphs with strong expansion properties. These hypergraphs are constructed using Cayley graphs over Z2t\mathbb{Z}_2^t and have vertex degree which is polylogarithmic in the number of vertices. Their expansion properties, which are derived from the underlying Cayley graphs, include analogues of vertex and edge expansion in graphs, rapid mixing of the random walk on the edges of the skeleton graph, uniform distribution of edges on large vertex subsets and the geometric overlap property.Comment: 13 page

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes
    • …
    corecore