3,720 research outputs found

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    RTLabOS Dissemination Activities:RTLabOS D4.2

    Get PDF

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Co-simulation techniques based on virtual platforms for SoC design and verification in power electronics applications

    Get PDF
    En las Ășltimas dĂ©cadas, la inversiĂłn en el ĂĄmbito energĂ©tico ha aumentado considerablemente. Actualmente, existen numerosas empresas que estĂĄn desarrollando equipos como convertidores de potencia o mĂĄquinas elĂ©ctricas con sistemas de control de Ășltima generaciĂłn. La tendencia actual es usar System-on-chips y Field Programmable Gate Arrays para implementar todo el sistema de control. Estos dispositivos facilitan el uso de algoritmos de control mĂĄs complejos y eficientes, mejorando la eficiencia de los equipos y habilitando la integraciĂłn de los sistemas renovables en la red elĂ©ctrica. Sin embargo, la complejidad de los sistemas de control tambiĂ©n ha aumentado considerablemente y con ello la dificultad de su verificaciĂłn. Los sistemas Hardware-in-the-loop (HIL) se han presentado como una soluciĂłn para la verificaciĂłn no destructiva de los equipos energĂ©ticos, evitando accidentes y pruebas de alto coste en bancos de ensayo. Los sistemas HIL simulan en tiempo real el comportamiento de la planta de potencia y su interfaz para realizar las pruebas con la placa de control en un entorno seguro. Esta tesis se centra en mejorar el proceso de verificaciĂłn de los sistemas de control en aplicaciones de electrĂłnica potencia. La contribuciĂłn general es proporcionar una alternativa a al uso de los HIL para la verificaciĂłn del hardware/software de la tarjeta de control. La alternativa se basa en la tĂ©cnica de Software-in-the-loop (SIL) y trata de superar o abordar las limitaciones encontradas hasta la fecha en el SIL. Para mejorar las cualidades de SIL se ha desarrollado una herramienta software denominada COSIL que permite co-simular la implementaciĂłn e integraciĂłn final del sistema de control, sea software (CPU), hardware (FPGA) o una mezcla de software y hardware, al mismo tiempo que su interacciĂłn con la planta de potencia. Dicha plataforma puede trabajar en mĂșltiples niveles de abstracciĂłn e incluye soporte para realizar co-simulaciĂłn mixtas en distintos lenguajes como C o VHDL. A lo largo de la tesis se hace hincapiĂ© en mejorar una de las limitaciones de SIL, su baja velocidad de simulaciĂłn. Se proponen diferentes soluciones como el uso de emuladores software, distintos niveles de abstracciĂłn del software y hardware, o relojes locales en los mĂłdulos de la FPGA. En especial se aporta un mecanismo de sincronizaron externa para el emulador software QEMU habilitando su emulaciĂłn multi-core. Esta aportaciĂłn habilita el uso de QEMU en plataformas virtuales de co-simulacion como COSIL. Toda la plataforma COSIL, incluido el uso de QEMU, se ha analizado bajo diferentes tipos de aplicaciones y bajo un proyecto industrial real. Su uso ha sido crĂ­tico para desarrollar y verificar el software y hardware del sistema de control de un convertidor de 400 kVA

    A Middleware-centric design methodology for networked embedded systems

    Get PDF
    Negli ultimi anni \ue8 incrementato considerevolmente l\u2019interesse verso gli \u201dambient intelligence\u201d, sistemi informatici, tipicamente composti da \u201dnetworked embedded systems\u201d (Wirelesse sensor networks, mobile terminal, PDA, etc.) i quali sono integrati nell\u2019ambiente umano con l\u2019obiettivo di migliorare la qualit`a della vita nel modo pi naturale possibile. Una applicazione \u201dNetworked Embedded System\u201d (NES) \ue8 un\u2019applicazione distribuita, eseguita su piattaforme HW/SW eterogenee che interagiscono attraverso differenti canali di comunicazione. Generalmente queste applicazioni per dispositivi NES vengono sviluppate senza il supporto di software di sistema, obbligando il progettista a modellare queste applicazioni utilizzando direttamente le primitive fornite dal sistema operativo embedded o le API dei drivers dei dispositivi HW. Con questa metodologia di progettazione, le applicazioni per sistemi embedded vengono realizzate ad-hoc per la piattaforma HW/SW, risultando essere n\ue9 portabili, n\ue9 scalabili e di conseguenza particolarmente costose. A causa di questi problemi, negli ultimi anni si \ue8 adottato un flusso di progettazione che prevede l\u2019introduzione di un \u201dservice layer\u201d chiamato middleware, il quale astrae le peculiarit del sistema operativo e dei componenti HW, semplificando la progettazione di queste applicazioni embedded. Allo stato dell\u2019arte sono presenti molte implmentazioni di middleware con differenti paradigmi di programmazione, e la scelta di quale utilizzare per progettazione una applicazione NES basata sui seguenti criteri: \u2022 abilit`a/conoscenza/capacit`a di programmazione da parte del progettista; \u2022 piattaforma HW/SW disponinile. Gli svantaggi di questo approccio sono un pi\uf9 complesso flusso di progettazione legato alla mancanza di portabilit\ue0 della stessa applicazione su differenti dispositivi embedded. Questo significa che la presenza del middleware non \ue8 mai stata introdotta nel flusso di progettazione come una esplicita dimensione di progetto. Obiettivo della tesi di dottorato \ue8 lo studio e la realizzazione di un flusso di progettazione per applicazioni per NES, dove il middleware \ue8 una dimensione di progetto, diventando una variabile di progetto come lo sono il software e lo hardware. Questo punto \ue8 ottenuto risolvendo tre problemi: \u2022 Fornire un modello di middleware astratto il quale pu\uf2 essere usato come componente del flusso di progettazione; questo middleware astratto, chiamato Abstract Middleware Services (AMS), fornisce un insieme di servizi astratti basati su differenti paradigmi di programmazione dei middleware reali. Utilizzando questo modello di middleware stratto, il progettista \ue8 facilitato nello sviluppo delle applicazioni per NES. \u2022 Fornire un ambiente di simulazione dove validare e simulare l\u2019intero modello realizzato dal progettista. \u2022 Fornire una metodologia automatica di traduzione da AMS ad un middleware reale, per poter eseguire l\u2019applicazione su una reale piattaforma HW/SW, dotata di un middleware qualsiasi. L\u2019attivit di dototrato ha permesso la definizione di un nuovo approccio di progettazione basato su un modello di middleware astratto che fornisce un ambiente per la modellazione e la validazione di applicazioni per Networked Embedded Systems, risolvendo i tre punti precedenti. Inoltre, al fine di produrre un efficiente ambiente di simulazione e modellazione, sono state analizzate le metodologie di co-simulazione hardware-software-network attualmente presenti in letteratura. L\u2019attivit\ue0 di dottorato inoltre parte integrante del progetto ANGEL finanziato dalla Comunit\ue0 Europea (IST-2005-33506 - Embedded Systems), il cui obiettivo \ue8 lo sviluppo di una piattaforma per la realizzazione di sistemi eterogenei nei quali Wireless Sensor Network (WSN) e tradizionali reti di comunicazioni cooperano per monitorare e migliorare la qualit\ue0 della vita in habitat comuni. Durante questa attivit\ue0 il flusso di progettazione che include anche il middleware come variabile di progetto, oggetto della tesi di dottorato, sar esemplificato su WSN e terminali mobili (per esempio cellulari) per far si che questi possano dialogare tra loro in modo intelligente.Ambient intelligence, pervasive and ubiquitous computing are the center of a great deal of attention because of their promise to bring benefits for end-users, higher revenues for manufacturers and new challenges for researchers. Typical computing technologies (such as telemedicine, manufacturing, crisis management) are part of a broader class of Networked Embedded Systems (NES) in which a large number of nodes are connected together and collaborate to perform a common task under a defined set of constraints. Therefore, the key aspects of these applications are their distributed nature and the presence of very limited HW resources, as in case of WSNs. Their wide adoption requires interoperability across different manufacturers, simplification of application development, simulation tools for functional validation and the fulfilment of tight HW/SW constraints. Interoperability is achieved through the use of standard protocol stacks (e.g., IEEE 802.15.1/Bluetooth and IEEE 802.15.4/Zig- Bee). Simplification of application development can be achieved through a service layer, named middleware, which abstracts from the peculiarities of the operating system and HW components. Traditionally, many NES applications have been developed without support from system software [1] excepts for device drivers and operating systems. State-of-the-art techniques [2] for NES focus on simple data-gathering applications, and in most cases, the design of the application and the system software are usually closely-coupled, or even combined as a monolithic procedure. Such applications are neither flexible nor scalable and they should be re-written if the platform changes. Middleware is emerging as an important architectural component in supporting NES applications able to facilitate the application development. The role of middleware is to present a unified programmingmodel to application designers and to mask out the problems of heterogeneity and distribution providing a basic set of tools and libraries for the low-level handling of technology-specific NES. Several NES middleware have been implemented in the past years each one providing different programming paradigms (e.g., Tuplespace, messageoriented, object-oriented, database, etc.) and differ with respect to ease to use, expressiveness, scalability and overhead. However, their diversity makes the development of high quality middleware-centric software systems complex: software engineering methods and tools should be developed with the use of middleware in mind. In such way, Sensation [xxx] presents a middleware platform solution for pervasive applications inWSN providing a developer-friendly programming interface. This approach is valid just for WSN and does not include a network simulator for an exhaustive network evaluation. Model Driven Architecture (MDA) tries to overcome this problem; MDA is a new way of writing specifications, based on a platform-independent model. A complete MDA specification consists of a platform-independent UML model, one or more platform-specific models, and interface definitions, each describing how the base model is implemented on a different middleware platform. The MDA focuses primarily on the functionality and behaviour of a distributed application or system, not on the technology in which it will be implemented. Furthermore,MDA does not directly provide a simulation environment. Simulation tools are used for validating the application: there is a range of NES simulators available that focus on the network itself. NS-2 is a pure network simulator tool, where the nodes are abstracted and do not run real codes or operating systems, but rather simple behavioral models or statistical traffic generators. The advantage of NS-2 is that scalability is excellent. TOSSIM is a platform-specific simulator environment for sensor networks based on TinyOs operating system. TOSSIM can compile unchanged TinyOS applications directly into its framework, which means that most of the codes written for TOSSIM can be directly used in TinyOS. TOSSIM is a specific simulator for TinyOS and Berkeley motes and cant be used for simulating a generic NES (e.g.,WSN). Finally, SIMICS is a commercial full-system simulator that can be used to simulate heterogenous networked and distributed systems. Complete SW stacks from real system can run on the simulator without any modification. Despite of these punctual contributions, the literature does not report a complete design methodology for NES applications integrating all such three aspects. Therefore, in order to fully support the applications of a great variety of users with different needs, a complete NES application modelling and simulation environment have to include two main components: \u2022 a simulator to validate and explore application functional behaviuor in a network simulated environment supporting interoperability between different implementation platforms and ensure scalability of the NES technology. \u2022 a middleware environemnt providing different programming paradigms. This Layer will serve as an abstraction layer hiding the different NES implementations peculiarities from end-user applications. The goal of this work is to present a middleware-centric design flow for NES, where the middleware plays a decisive role in the design process. The proposed methodology allows programmers to write NES applications by using the system description language named SystemC and the AbstractMiddleware Environment (AME) framework for fast simulation. This proposal has three main advantages: (1) It provides a set of abstract services supporting the programming paradigms of different actual middleware implementations in order to meet the skills of the designer. AME facilitates the NES design flow by providing a unified and developer-common interface concealing the peculiarities of the underlying NES where the simulation environment is modelled in order to simulate the NES applications taking in account hardware and network effects. (2) The application can be simulated at early stage of the design flow for functional validation. (3) automatic mapping of AME applications on the actual platform; this guarantees the correct trade-off between level of abstraction and efficiency of implementation. In the follow we classify the actual middleware approaches according to their programming paradigms; then the AMEcentric design flow is described and finally we report the experimental results

    Platform-based design, test and fast verification flow for mixed-signal systems on chip

    Get PDF
    This research is providing methodologies to enhance the design phase from architectural space exploration and system study to verification of the whole mixed-signal system. At the beginning of the work, some innovative digital IPs have been designed to develop efficient signal conditioning for sensor systems on-chip that has been included in commercial products. After this phase, the main focus has been addressed to the creation of a re-usable and versatile test of the device after the tape-out which is close to become one of the major cost factor for ICs companies, strongly linking it to model’s test-benches to avoid re-design phases and multi-environment scenarios, producing a very effective approach to a single, fast and reliable multi-level verification environment. All these works generated different publications in scientific literature. The compound scenario concerning the development of sensor systems is presented in Chapter 1, together with an overview of the related market with a particular focus on the latest MEMS and MOEMS technology devices, and their applications in various segments. Chapter 2 introduces the state of the art for sensor interfaces: the generic sensor interface concept (based on sharing the same electronics among similar applications achieving cost saving at the expense of area and performance loss) versus the Platform Based Design methodology, which overcomes the drawbacks of the classic solution by keeping the generality at the highest design layers and customizing the platform for a target sensor achieving optimized performances. An evolution of Platform Based Design achieved by implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform is therefore presented. ISIF is a highly configurable mixed-signal chip which allows designers to perform an effective design space exploration and to evaluate directly on silicon the system performances avoiding the critical and time consuming analysis required by standard platform based approach. In chapter 3 we describe the design of a smart sensor interface for conditioning next generation MOEMS. The adoption of a new, high performance and high integrated technology allow us to integrate not only a versatile platform but also a powerful ARM processor and various IPs providing the possibility to use the platform not only as a conditioning platform but also as a processing unit for the application. In this chapter a description of the various blocks is given, with a particular emphasis on the IP developed in order to grant the highest grade of flexibility with the minimum area occupation. The architectural space evaluation and the application prototyping with ISIF has enabled an effective, rapid and low risk development of a new high performance platform achieving a flexible sensor system for MEMS and MOEMS monitoring and conditioning. The platform has been design to cover very challenging test-benches, like a laser-based projector device. In this way the platform will not only be able to effectively handle the sensor but also all the system that can be built around it, reducing the needed for further electronics and resulting in an efficient test bench for the algorithm developed to drive the system. The high costs in ASIC development are mainly related to re-design phases because of missing complete top-level tests. Analog and digital parts design flows are separately verified. Starting from these considerations, in the last chapter a complete test environment for complex mixed-signal chips is presented. A semi-automatic VHDL-AMS flow to provide totally matching top-level is described and then, an evolution for fast self-checking test development for both model and real chip verification is proposed. By the introduction of a Python interface, the designer can easily perform interactive tests to cover all the features verification (e.g. calibration and trimming) into the design phase and check them all with the same environment on the real chip after the tape-out. This strategy has been tested on a consumer 3D-gyro for consumer application, in collaboration with SensorDynamics AG
    • 

    corecore