202,621 research outputs found

    The phases of 2D NCOS

    Get PDF
    We study the phases of the 1+1 dimensional Non-Commutative Open String theory on a circle. We find that the length scale of non-commutativity increases at strong coupling, the coupling in turn being dressed by a power of D-string charge. The system is stringy at around this length scale, with dynamics involving an interplay between the open and wrapped closed strings sectors. Above this energy scale and at strong coupling, and below it at weak coupling, the system acquires a less stringy character. The near horizon geometry of the configuration exhibits several intriguing features, such as a flip in the dilaton field and the curvature scale, reflecting UV-IR mixing in non-commutative dynamics. Two special points in the parameter measuring the size of the circle are also identified.Comment: 27 pages, 4 figures; v2: reference added; v3: error in argument on page 6 correcte

    Magnetic flux tube models in superstring theory

    Get PDF
    Superstring models describing curved 4-dimensional magnetic flux tube backgrounds are exactly solvable in terms of free fields. We first consider the simplest model of this type (corresponding to `Kaluza-Klein' Melvin background). Its 2d action has a flat but topologically non-trivial 10-dimensional target space (there is a mixing of angular coordinate of the 2-plane with an internal compact coordinate). We demonstrate that this theory has broken supersymmetry but is perturbatively stable if the radius R of the internal coordinate is larger than R_0=\sqrt{2\a'}. In the Green-Schwarz formulation the supersymmetry breaking is a consequence of the presence of a flat but non-trivial connection in the fermionic terms in the action. For R < R_0 and the magnetic field strength parameter q > R/2\a' there appear instabilities corresponding to tachyonic winding states. The torus partition function Z(q,R) is finite for R > R_0 (and vanishes for qR=2n, n=integer). At the special points qR=2n (2n+1) the model is equivalent to the free superstring theory compactified on a circle with periodic (antiperiodic) boundary condition for space-time fermions. Analogous results are obtained for a more general class of static magnetic flux tube geometries including the a=1 Melvin model.Comment: 28 pages, harvmac. Minor changes, final version to appear in NP

    Herschel/SPIRE observations of the dusty disk of NGC 4244

    Get PDF
    We present Herschel/SPIRE images at 250, 350, and 500 mu m of NGC 4244, a typical low-mass, disk-only and edge-on spiral galaxy. The dust disk is clumpy and shows signs of truncation at the break radius of the stellar disk. This disk coincides with the densest part of the Hi disk. We compare the spectral energy distribution (SED), including the new SPIRE fluxes, to 3D radiative transfer models; a smooth model disk and a clumpy model with embedded heating. Each model requires a very high value for the dust scale-length (h(d) = 2-5 h(*)), higher dust masses than previous models of NGC 4244 (M-d = 0.47-1.39 x 10(7) M-circle dot) and a face-on optical depth of tau(f.o.)(V) = 0.4-1.12, in agreement with previous disk opacity studies. The vertical scales of stars and dust are similar. The clumpy model much better mimics the general morphology in the sub-mm images and the general SED. The inferred gas-to-dust mass ratio is compatible with those of similar low-mass disks. The relatively large radial scale-length of the dust disk points to radial mixing of the dusty ISM within the stellar disk. The large vertical dust scale and the clumpy dust distribution of our SED model are both consistent with a scenario in which the vertical structure of the ISM is dictated by the balance of turbulence and self-gravity

    Dynamical consequences of a free interval: minimality, transitivity, mixing and topological entropy

    Full text link
    We study dynamics of continuous maps on compact metrizable spaces containing a free interval (i.e., an open subset homeomorphic to an open interval). A special attention is paid to relationships between topological transitivity, weak and strong topological mixing, dense periodicity and topological entropy as well as to the topological structure of minimal sets. In particular, a trichotomy for minimal sets and a dichotomy for transitive maps are proved.Comment: 21 page

    Ergodic properties of countable extensions

    Get PDF
    First, we study countably piecewise continuous, piecewise monotone interval maps. We establish a necessary and sufficient criterion for the existence of a non-decreasing semiconjugacy to an interval map of constant slope in terms of the existence of an eigenvector of an operator acting on a space of measures. Then we give examples, both Markov and non-Markov, for which the criterion is violated. ^ Next, we establish a criterion for the existence of a constant slope map on the extended real line conjugate to a given countably piecewise monotone interval map. We require the given interval map to be continuous, Markov, and topologically mixing, and show by example that the mixing hypothesis is essential. ^ Next, we study a class of countable state subshifts of finite type which admit finite-state factors. Our systems carry a displacement function, analogous to that used in the rotation theory of circle maps. Among those invariant measures on the factor system for which the average displacement is zero, we identify a unique measure of maximal entropy. As a corollary we obtain an efficient computational tool for the Gurevich entropy of the countable state system. We also prove that the countable state systems in our class do not admit any measure of maximal entropy. ^ Finally, we apply our findings to the study of degree one circle maps with Markov partitions and with transitive liftings to the real line. After compactifying by adjoining fixed points at plus and minus infinity, we show how to compute the topological entropy of the lifting and how to find all conjugate maps of constant slope. We prove that there are conjugate maps of constant slope for every slope greater than or equal to the exponential of the entropy

    CP Violations in Lepton Number Violation Processes and Neutrino Oscillations

    Get PDF
    We examine the constraints on the MNS lepton mixing matrix from the present and future experimental data of the neutrino oscillation and lepton number violation processes. We introduce a graphical representation of the CP violation phases which appear in the lepton number violation processes such as neutrinoless double beta decay, the Ό−−e+\mu^--e^+ conversion, and the K decay, K−→π+Ό−Ό−.K^-\to\pi^+\mu^-\mu^-. Using this graphical representation, we derive the constraints on the CP violation phases in the lepton sector.Comment: 21pp, REVTeX, 9 Figure

    MNS Parameters from Neutrino Oscillations, Single Beta Decay and Double Beta Decay

    Full text link
    We examine the constraints on the MNS lepton mixing matrix =66rom the present and future experimental data of the neutrino oscillation, tritium beta decay, and neutrinoless double beta decay for Majorana neutrinos. We show that the small mixing angle solutions for solar neutrino problem are disfavored for small averaged mass () of neutrinoless double beta decay ($\leq 0.01$ eV) in the inverse neutrino mass hierarchy scenario. This is the case even in the normal mass hierarchy scenario except for very restrictive value of the averaged neutrino mass ($\bar{m_\nu}$) of single beta decay. The lower mass bound for $\bar{m_\nu}$ is given from the present neutrino oscillation data. We obtain some relations between and mΜˉ\bar{m_\nu}. The constraints on the Majorana CP violating phases are also given.Comment: 25pages, 10figure
    • 

    corecore