101 research outputs found

    Road vehicle state estimation using low-cost GPS/INS

    Get PDF
    Due to noise and bias in the Inertial Navigation System (INS), vehicle dynamics measurements using the INS are inaccurate. Although alternative methods involving the integration of INS with accurate Global Positioning System (GPS) exist and are accurate, this kind of system is far too expensive to become value-adding to production vehicles. This thesis therefore considers two aspects: 1) the possibility of estimating vehicle dynamics using low-cost INS and GPS, and 2) the importance of vehicle dynamics in terms of handling in the eyes of customers upon vehicle purchase. The former aspect is considered from an engineering perspective and the latter is studied in a marketing context. From an engineering point of view, knowledge of vehicle dynamics not only improves existing safety control systems, such the Anti-lock Braking System (ABS) and Electronic Stabilising Program (ESP), but also allows the development of new systems. Based on modelling and simulation in MATLAB/Simulink, low-cost GPS and in-car INS (such as accelerometers, gyroscopes and wheel speed sensors) measurements are fused using Kalman Filters (KFs) to estimate the vehicle dynamics. These estimations are then compared with the simulation results from IPG Car- Maker. For most simulations, the speed of the vehicle is kept between 15 to 55kph. It is found that while triple KF designs are able to estimate the tyre radius, the longitudinal velocity and the heading angle accurately, an integrated KF design with known vehicle parameters is also able to estimate the lateral velocity precisely. Apart from studying and comparing different KF designs with restricted sensors quality, the effects and benefits of different sensor qualities in dynamic estimations are also studied via the variation of sensor sampling rates and accuracies. This investigation produces a design procedure and estimation error analyses (theoretical and graphical) which may help future engineers in designing their KFs. From a marketing perspective, it is important to understand customers’ purchase reasons in order to allocate resources more efficiently and effectively. As GPS/INS KF designs are able to enhance vehicle handling, it is vital to understand the relative importance of vehicle handling as a consumer purchase choice criterion. Based on two surveys, namely the New Vehicle Experience Survey in the US (NVES US) and the New Car Buyer Survey in the UK (NCBS UK), analyses are performed in a computer program called the Predictive Analytics SoftWare (PASW), which is formerly known as the Statistical Package for the Social Sciences (SPSS). The number of purchase reasons are first reduced with factor analysis, the latent factors produced are then used in the SPSS Two Step Cluster analysis for customer segmentation. With the customer segments and the latent factors defined, a discriminant analysis is carried out to determine customer type in the automobile sector, in particular for Jaguar Cars. It is found that customers in general take vehicle handling for granted and often underrate its importance in their purchase. New vehicle handling-aided systems therefore need to be marketed in terms of the value they add to other benefits such as reliability and performance in order to increase sales and stakeholder value

    Recurrent Neural Network Model for On-Board Estimation of the Side-Slip Angle in a Four-Wheel Drive and Steering Vehicle

    Get PDF
    A valuable quantity for analyzing the lateral dynamics of road vehicles is the side-slip angle, that is, the angle between the vehicle’s longitudinal axis and its speed direction. A reliable real-time side slip angle value enables several features, such as stability controls, identification of understeer and oversteer conditions, estimation of lateral forces during cornering, or tire grip and wear estimation. Since the direct measurement of this variable can only be done with complex and expensive devices, it is worth trying to estimate it through virtual sensors based on mathematical models. This article illustrates a methodology for real-time on-board estimation of the side-slip angle through a machine learning model (SSE—side-slip estimator). It exploits a recurrent neural network trained and tested via on-road experimental data acquisition. In particular, the machine learning model only uses input signals from a standard road car sensor configuration. The model adaptability to different road conditions and tire wear levels has been verified through a sensitivity analysis and model testing on real-world data proves the robustness and accuracy of the proposed solution achieving a root mean square error (RMSE) of 0.18 deg and a maximum absolute error of 1.52 deg on the test dataset. The proposed model can be considered as a reliable and cheap potential solution for the real-time on-board side-slip angle estimation in serial cars

    Hybrid Kinematic-Dynamic Sideslip and Friction Estimation

    Get PDF
    Vehicle sideslip and tyre/road friction are crucial variables for advanced vehicle stability control systems. Estimation is required since direct measurement through sensors is costly and unreliable. In this paper, we develop and validate a sideslip estimator robust to unknown road grip conditions. Particularly, the paper addresses the problem of rapid tyre/road friction adaptation when sudden road condition variations happen. The algorithm is based on a hybrid kinematic-dynamic closed-loop observer augmented with a tyre/road friction classifier that reinitializes the states of the estimator when a change of friction is detected. Extensive experiments on a four wheel drive electric vehicle carried out on different roads quantitatively validate the approach. The architecture guarantees accurate estimation on dry and wet asphalt and snow terrain with a maximum sideslip estimation error lower than 1.5 deg. The classifier correctly recognizes 87% of the friction changes; wrongly classifies 2% of the friction changes while it is unable to detect the change in 11% of the cases. The missed detections are due to the fact that the algorithm requires a certain level of vehicle excitation to detect a change of friction. The average classification time is 1.6 s. The tests also indicate the advantages of the friction classifiers on the sideslip estimation error

    A Systematic Survey of Control Techniques and Applications: From Autonomous Vehicles to Connected and Automated Vehicles

    Full text link
    Vehicle control is one of the most critical challenges in autonomous vehicles (AVs) and connected and automated vehicles (CAVs), and it is paramount in vehicle safety, passenger comfort, transportation efficiency, and energy saving. This survey attempts to provide a comprehensive and thorough overview of the current state of vehicle control technology, focusing on the evolution from vehicle state estimation and trajectory tracking control in AVs at the microscopic level to collaborative control in CAVs at the macroscopic level. First, this review starts with vehicle key state estimation, specifically vehicle sideslip angle, which is the most pivotal state for vehicle trajectory control, to discuss representative approaches. Then, we present symbolic vehicle trajectory tracking control approaches for AVs. On top of that, we further review the collaborative control frameworks for CAVs and corresponding applications. Finally, this survey concludes with a discussion of future research directions and the challenges. This survey aims to provide a contextualized and in-depth look at state of the art in vehicle control for AVs and CAVs, identifying critical areas of focus and pointing out the potential areas for further exploration

    Cross-combined UKF for vehicle sideslip angle estimation with a modified Dugoff tire model: design and experimental results

    Get PDF
    Abstract: The knowledge of key vehicle states is crucial to guarantee adequate safety levels for modern passenger cars, for which active safety control systems are lifesavers. In this regard, vehicle sideslip angle is a pivotal state for the characterization of lateral vehicle behavior. However, measuring sideslip angle is expensive and unpractical, which has led to many years of research on techniques to estimate it instead. This paper presents a novel method to estimate vehicle sideslip angle, with an innovative combination of a kinematic-based approach and a dynamic-based approach: part of the output of the kinematic-based approach is fed as input to the dynamic-based approach, and vice-versa. The dynamic-based approach exploits an Unscented Kalman Filter (UKF) with a double-track vehicle model and a modified Dugoff tire model, that is simple yet ensures accuracy similar to the well-known Magic Formula. The proposed method is successfully assessed on a large amount of experimental data obtained on different race tracks, and compared with a traditional approach presented in the literature. Results show that the sideslip angle is estimated with an average error of 0.5 deg, and that the implemented cross-combination allows to further improve the estimation of the vehicle longitudinal velocity compared to current state-of-the-art techniques, with interesting perspectives for future onboard implementation

    Optimal torque vectoring control strategies for stabilisation of electric vehicles at the limits of handling

    Get PDF
    The study of chassis control has been a major research area in the automotive industry and academia for more than fifty years now. Among the popular methods used to actively control the dynamics of a vehicle, torque vectoring, the method of controlling both the direction and the magnitude of the torque on the wheels, is of particular interest. Such a method can alter the vehicle’s behaviour in a positive way under both sub-limit and limit handling conditions and has become even more relevant in the case of an electric vehicle equipped with multiple electric motors. Torque vectoring has been so far employed mainly in lateral vehicle dynamics control applications, with the longitudinal dynamics of the vehicle remaining under the full authority of the driver. Nevertheless, it has been also recognised that active control of the longitudinal dynamics of the vehicle can improve vehicle stability in limit handling situations. A characteristic example of this is the case where the driver misjudges the entry speed into a corner and the vehicle starts to deviate from its path, a situation commonly referred to as a ‘terminal understeer’ condition. Use of combined longitudinal and lateral control in such scenarios have been already proposed in the literature, but these solutions are mainly based on heuristic approaches that also neglect the strong coupling of longitudinal and lateral dynamics in limit handling situations. The main aim of this project is to develop a real-time implementable multivariable control strategy to stabilise the vehicle at the limits of handling in an optimal way using torque vectoring via the two independently controlled electric motors on the rear axle of an electric vehicle. To this end, after reviewing the most important contributions in the control of lateral and/or longitudinal vehicle dynamics with a particular focus on the limit handling solutions, a realistic vehicle reference behaviour near the limit of lateral acceleration is derived. An unconstrained optimal control strategy is then developed for terminal understeer mitigation. The importance of constraining both the vehicle state and the control inputs when the vehicle operates at the limits of handling is shown by developing a constrained linear optimal control framework, while the effect of using a constrained nonlinear optimal control framework instead is subsequently examined next. Finally an optimal estimation strategy for providing the necessary vehicle state information to the proposed optimal control strategies is constructed, assuming that only common vehicle sensors are available. All the developed optimal control strategies are assessed not only in terms of performance but also execution time, so to make sure they are implementable in real time on a typical Electronic Control Unit

    Optimal Direct Yaw Moment Control of a 4WD Electric Vehicle

    Get PDF
    This thesis is concerned with electronic stability of an all-wheel drive electric vehicle with independent motors mounted in each wheel. The additional controllability and speed permitted using independent motors can be exploited to improve the handling and stability of electric vehicles. In this thesis, these improvements arise from employing a direct yaw moment control (DYC) system that seeks to adapt the understeer gradient of the vehicle and achieve neutral steer by employing a supervisory controller and simultaneously tracking an ideal yaw rate and ideal sideslip angle. DYC enhances vehicle stability by generating a corrective yaw moment realized by a torque vectoring controller which generates an optimal torque distribution among the four wheels. The torque allocation at each instant is computed by finding a solution to an optimization problem using gradient descent, a well-known algorithm that seeks the minimum cost employing the gradient of the cost function. A cost function seeking to minimize excessive wheel slip is proposed as the basis of the optimization problem, while the constraints come from the physical limitations of the motors and friction limits between the tires and road. The DYC system requires information about the tire forces in real-time, so this study presents a framework for estimating the tire force in all three coordinate directions. The sideslip angle is also a crucial quantity that must be measured or estimated but is outside the scope of this study. A comparative analysis of three different formulations of sliding mode control used for computation of the corrective yaw moment and an evaluation of how successfully they achieve neutral steer is presented. IPG Automotive’s CarMaker software, a high-fidelity vehicle simulator, was used as the plant model. A custom electric powertrain model was developed to enable any CarMaker vehicle to be reconfigured for independent control of the motors. This custom powertrain, called TVC_OpenXWD uses the torque/speed map of a Protean Pd18 implemented with lookup tables for each of the four motors. The TVC_OpenXWD powertrain model and controller were designed in MATLAB and Simulink and exported as C code to run them as plug-ins in CarMaker. Simulations of some common maneuvers, including the J-turn, sinusoidal steer, skid pad, and mu-split, indicate that employing DYC can achieve neutral steer. Additionally, it simultaneously tracks the ideal yaw rate and sideslip angle, while maximizing the traction on each tire[CB1] . The control system performance is evaluated based on its ability to achieve neutral steer by means of tracking the reference yaw rate, stabilizing the vehicle by means of reducing the sideslip angle, and to reduce chattering. A comparative analysis of sliding mode control employing a conventional switching function (CSMC), modified switching function (MSMC), and PID control (HSMC) demonstrates that the MSMC outperforms the other two methods in addition to the open loop system

    Integration of Active Systems for a Global Chassis Control Design

    Get PDF
    Vehicle chassis control active systems (braking, suspension, steering and driveline), from the first ABS/ESC control unit to the current advanced driver assistance systems (ADAS), are progressively revolutionizing the way of thinking and designing the vehicle, improving its interaction with the surrounding world (V2V and V2X) and have led to excellent results in terms of safety and performances (dynamic behavior and drivability). They are usually referred as intelligent vehicles due to a software/hardware architecture able to assist the driver for achieving specific safety margin and/or optimal vehicle dynamic behavior. Moreover, industrial and academic communities agree that these technologies will progress till the diffusion of the so called autonomous cars which are able to drive robustly in a wide range of traffic scenarios. Different autonomous vehicles are already available in Europe, Japan and United States and several solutions have been proposed for smart cities and/or small public area like university campus. In this context, the present research activity aims at improving safety, comfort and performances through the integration of global active chassis control: the purposes are to study, design and implement control strategies to support the driver for achieving one or more final target among safety, comfort and performance. Specifically, the vehicle subsystems that are involved in the present research for active systems development are the steering system, the propulsion system, the transmission and the braking system. The thesis is divided into three sections related to different applications of active systems that, starting from a robust theoretical design procedure, are strongly supported by objective experimental results obtained fromHardware In the Loop (HIL) test rigs and/or proving ground testing sessions. The first chapter is dedicated to one of the most discussed topic about autonomous driving due to its impact from the social point of view and in terms of human error mitigation when the driver is not prompt enough. In particular, it is here analyzed the automated steering control which is already implemented for automatic parking and that could represent also a key element for conventional passenger car in emergency situation where a braking intervention is not enough for avoiding an imminent collision. The activity is focused on different steering controllers design and their implementation for an autonomous vehicle; an obstacle collision avoidance adaptation is introduced for future implementations. Three different controllers, Proportional Derivative (PD), PD+Feedforward (FF) e PD+Integral Sliding Mode (ISM), are designed for tracking a reference trajectory that can be modified in real-time for obstacle avoidance purposes. Furthermore, PD+FF and PD+ISM logic are able to improve the tracking performances of automated steering during cornering maneuvers, relevant fromthe collision avoidance point of view. Path tracking control and its obstacle avoidance enhancement is also shown during experimental tests executed in a proving ground through its implementation for an autonomous vehicle demonstrator. Even if the activity is presented for an autonomous vehicle, the active control can be developed also for a conventional vehicle equipped with an Electronic Power Steering (EPS) or Steer-by-wire architectures. The second chapter describes a Torque Vectoring (TV) control strategy, applied to a Fully Electric Vehicle (FEV) with four independent electric motor (one for each wheel), that aims to optimize the lateral vehicle behavior by a proper electric motor torque regulation. A yaw rate controller is presented and designed in order to achieve a desired steady-state lateral behaviour of the car (handling task). Furthermore, a sideslip angle controller is also integrated to preserve vehicle stability during emergency situations (safety task). LQR, LQR+FF and ISM strategies are formulated and explained for yaw rate and concurrent yaw rate/sideslip angle control techniques also comparing their advantages and weakness points. The TV strategy is implemented and calibrated on a FEV demonstrator by executing experimental maneuvers (step steer, skid pad, lane change and sequence of step steers) thus proving the efficacy of the proposed controller and the safety contribution guaranteed by the sideslip control. The TV could be also applied for internal combustion engine driven vehicles by installing specific torque vectoring differentials, able to distribute the torque generated by the engine to each wheel independently. The TV strategy evaluated in the second chapter can be influenced by the presence of a transmission between themotor (or the engine) and wheels (where the torque control is supposed to be designed): in addition to the mechanical delay introduced by transmission components, the presence of gears backlashes can provoke undesired noises and vibrations in presence of torque sign inversion. The last chapter is thus related to a new method for noises and vibration attenuation for a Dual Clutch Transmission (DCT). This is achieved in a new way by integrating the powertrain control with the braking system control, which are historically and conventionally analyzed and designed separately. It is showed that a torsional preload effect can be obtained on transmission components by increasing the wheel torque and concurrently applying a braking wheel torque. For this reason, a pressure following controller is presented and validated through a Hardware In the Loop (HIL) test rig in order to track a reference value of braking torque thus ensuring the desired preload effect and noises reduction. Experimental results demonstrates the efficacy of the controller, also opening new scenario for global chassis control design. Finally, some general conclusions are drawn and possible future activities and recommendations are proposed for further investigations or improvements with respect to the results shown in the present work

    Road Friction Virtual Sensing:A Review of Estimation Techniques with Emphasis on Low Excitation Approaches

    Get PDF
    In this paper, a review on road friction virtual sensing approaches is provided. In particular, this work attempts to address whether the road grip potential can be estimated accurately under regular driving conditions in which the vehicle responses remain within low longitudinal and lateral excitation levels. This review covers in detail the most relevant effect-based estimation methods; these are methods in which the road friction characteristics are inferred from the tyre responses: tyre slip, tyre vibration, and tyre noise. Slip-based approaches (longitudinal dynamics, lateral dynamics, and tyre self-alignment moment) are covered in the first part of the review, while low frequency and high frequency vibration-based works are presented in the following sections. Finally, a brief summary containing the main advantages and drawbacks derived from each estimation method and the future envisaged research lines are presented in the last sections of the paper
    • …
    corecore