686 research outputs found

    Designing a Fuzzy Strategic Integrated Multiechelon Agile Supply Chain Network

    Get PDF

    Optimal Inventory Control and Distribution Network Design of Multi-Echelon Supply Chains

    Get PDF
    Optimale Bestandskontrolle und Gestaltung von Vertriebsnetzen mehrstufiger Supply Chains Aufgrund von Global Sourcing, Outsourcing der Produktion und Versorgung weltweiter Kunden innerhalb eines komplexen Vertriebsnetzes, in welchem mehrere Anlagen durch verschiedene AktivitĂ€ten miteinander vernetzt sind, haben die meisten Unternehmen heutzutage immer komplexere Supply Chain-Netzwerke in einer immer unbestĂ€ndiger werdenden GeschĂ€ftsumgebung. Mehr beteiligte Unternehmen in der Wertschöpfungskette bedeuten mehr Knoten und Verbindungen im Netzwerk. Folglich bringt die Globalisierung KomplexitĂ€t und neue Herausforderungen, obwohl Unternehmen immer stĂ€rker von globalen Supply Chains profitieren. In einer solchen GeschĂ€ftsumgebung mĂŒssen sich die Akteure innerhalb der Supply Chain (SC) auf die effiziente Verwaltung und Koordination des Materialflusses im mehrstufigen System fokussieren, um diesen Herausforderungen handhaben zu können. In vielen FĂ€llen beinhaltet die Supply Chain eines Unternehmens unterschiedliche Entscheidungen auf verschiedenen Planungsebenen, wie der Anlagenstandort, die BestĂ€nde und die Verkehrsmittel. Jede dieser Entscheidungen spielt eine bedeutende Rolle hinsichtlich der Gesamtleistung und das VerhĂ€ltnis zwischen ihnen kann nicht ignoriert werden. Allerdings wurden diese Entscheidungen meist einzeln untersucht. In den letzten Jahren haben zahlreiche Studien die Bedeutung der Integration von beteiligten Entscheidungen in Supply Chains hervorgehoben. In diesem Zusammenhang sollten Entscheidungen ĂŒber Anlagenstandort, Bestand und Verkehrsmittel gemeinsam in einem Optimierungsproblem des Vertriebsnetzes betrachtet werden, um genauere Ergebnisse fĂŒr das Gesamtsystem zu erzeugen. DarĂŒber hinaus ist ein effektives Management des Materialflusses ĂŒber die gesamte Lieferkette hinweg, aufgrund der dynamischen Umgebung mit mehreren Zielen, ein schwieriges Problem. Die LösungsansĂ€tze, die in der Vergangenheit verwendet wurden, um Probleme mehrstufiger Supply Chains zu lösen, basierten auf herkömmlichen Verfahren unter der Verwendung von analytischen Techniken. Diese sind jedoch nicht ausreichend, um die Dynamiken in Lieferketten zu bewĂ€ltigen, aufgrund ihrer UnfĂ€higkeit, mit den komplexen Interaktionen zwischen den Akteuren der Supply Chain umzugehen und das stochastische Verhalten zu reprĂ€sentieren, das in vielen Problemen der realen Welt besteht. Die Simulationsmodellierung ist in letzter Zeit zu einem wichtigen Instrument geworden, da ein analytisches Modell nicht in der Lage ist, ein System abzubilden, das sowohl der VariabilitĂ€t als auch der KomplexitĂ€t unterliegt. Allerdings erfordern Simulationen umfangreiche Laufzeiten, um möglichst viele Lösungen zu bewerten und die optimale Lösung fĂŒr ein definiertes Problem zu finden. Um mit dieser Schwierigkeit umzugehen, muss das Simulationsmodell in Optimierungsalgorithmen integriert werden. In Erwiderung auf die oben genannten Herausforderungen, ist eines der Hauptziele dieser Arbeit, ein Modell und ein Lösungsverfahren fĂŒr die optimale Gestaltung von Vertriebsnetzwerken integrierter Supply Chains vorzuschlagen, das die Beziehung zwischen den Entscheidungen der verschiedenen Planungsebenen berĂŒcksichtigt. Die Problemstellung wird mithilfe von Zielfunktionen formuliert, um die Kundenabdeckung zu maximieren, den maximalen Abstand von den Anlagenstandorten zu den Bedarfspunkten zu minimieren oder die Gesamtkosten zu minimieren. Um die optimale Anzahl, KapazitĂ€t und Lage der Anlagen zu bestimmen, kommen der Nondominated Sorting Genetic Algorithm II (NSGA-II) und der Quantum-based Particle Swarm Optimization Algorithm (QPSO) zum Einsatz, um dieses Optimierungsproblem im Spannungsfeld verschiedener Ziele zu lösen. Aufgrund der KomplexitĂ€t mehrstufiger Systeme und der zugrunde liegenden Unsicherheiten, wurde die Optimierung von BestĂ€nden ĂŒber die gesamte Lieferkette hinweg zur wesentlichen Herausforderung, um die Kosten zu reduzieren und die Serviceanforderungen zu erfĂŒllen. In diesem Zusammenhang ist das andere Ziel dieser Arbeit die Darstellung eines simulationsbasierten Optimierungs-Frameworks, in dem die Simulation, basierend auf der objektorientierten Programmierung, entwickelt wird und die Optimierung metaheuristische Techniken mit unterschiedlichen Kriterien, wie NSGA-II und MOPOSO, verwendet. Insbesondere das geplante Framework regt einen großen Nutzen an, sowohl fĂŒr das Bestandsoptimierungsproblem in mehrstufigen Supply Chains, als auch fĂŒr andere Logistikprobleme.Today, most companies have more complex supply chain networks in a more volatile business environment due to global sourcing, outsourcing of production and serving customers all over the world with a complex distribution network that has several facilities linked by various activities. More companies involved within the value chain, means more nodes and links in the network. Therefore, globalization brings complexities and new challenges as enterprises increasingly benefit from global supply chains. In such a business environment, Supply Chain (SC) members must focus on the efficient management and coordination of material flow in the multi-echelon system to handle with these challenges. In many cases, the supply chain of a company includes various decisions at different planning levels, such as facility location, inventory and transportation. Each of these decisions plays a significant role in the overall performance and the relationship between them cannot be ignored. However, these decisions have been mostly studied individually. In recent years, numerous studies have emphasized the importance of integrating the decisions involved in supply chains. In this context, facility location, inventory and transportation decisions should be jointly considered in an optimization problem of distribution network design to produce more accurate results for the whole system. Furthermore, effective management of material flow across a supply chain is a difficult problem due to the dynamic environment with multiple objectives. In the past, the majority of the solution approaches used to solve multi-echelon supply chain problems were based on conventional methods using analytical techniques. However, they are insufficient to cope with the SC dynamics because of the inability to handle to the complex interactions between the SC members and to represent stochastic behaviors existing in many real world problems. Simulation modeling has recently become a major tool since an analytical model is unable to formulate a system that is subject to both variability and complexity. However, simulations require extensive runtime to evaluate many feasible solutions and to find the optimal one for a defined problem. To deal with this problem, simulation model needs to be integrated in optimization algorithms. In response to the aforementioned challenges, one of the primary objectives of this thesis is to propose a model and solution method for the optimal distribution network design of an integrated supply chain that takes into account the relationship between decisions at the different levels of planning horizon. The problem is formulated with objective functions to maximize the customer coverage or minimize the maximal distance from the facilities to the demand points and minimize the total cost. In order to find optimal number, capacity and location of facilities, the Nondominated Sorting Genetic Algorithm II (NSGA-II) and Quantum-based Particle Swarm Optimization Algorithm (QPSO) are employed for solving this multiobjective optimization problem. Due to the complexities of multi-echelon system and the underlying uncertainty, optimizing inventories across the supply chain has become other major challenge to reduce the cost and to meet service requirements. In this context, the other aim of this thesis is to present a simulation-based optimization framework, in which the simulation is developed based on the object-oriented programming and the optimization utilizes multi-objective metaheuristic techniques, such as the well-known NSGA-II and MOPSO. In particular, the proposed framework suggests a great utility for the inventory optimization problem in multi-echelon supply chains, as well as for other logistics-related problems

    Order picking strategies for healthcare warehouses.

    Get PDF
    Order picking is the process of collecting goods and items in specified quantities from storage locations, in response to customer orders. Since many labor resources are involved in this process, finding ways to make it more efficient have been a primary goal for researchers and practitioners. Determining a better allocation of products to the storage areas, finding the best route and sequence to pick multiple products, and choosing the best picking policies to minimize congestion in the aisles are just a few of many objectives regarding order picking process. Due to regulatory compliances and the chance of product spoilage, additional criteria should be taken into account when dealing with order picking in a healthcare warehouse. Following the first-expired, first-out (FEFO) principle and fulfilling an order from a single manufacturing batch, are two of the requirements that are considered in this research. Moreover, minimizing the traveled distance to picking locations, minimizing the penalty or cost of using the space by depleting it quicker, and maximizing the probability of a successful pick in the future by considering the order size distribution are the other objectives that have been studied in this research. The desired order picking problem is formulated and solved as a multi-objective mixed integer programming optimization model. Assigning importance weights to each objective and obtaining one single solution does not provide a full picture of all possible and potentially attractive solutions. On the other hand, providing all the solutions is not always achievable as it is computationally expensive and most of the time a set of rules and regulations drive decision makers toward the chosen solution. Finally, this research focuses on solution simplicity, generality, and practicality since the solution will be implemented by order pickers. To achieve this goal, a novel approach using association rule mining is presented. Products are classified in different groups and some order picking rules are derived based on the relations of these classes together. These rules are then compared with the results of multi-objective optimization model to evaluate their quality. The comparison results showed that surprisingly, some simple rules extracted from the preferences of the decision maker, can obtain good quality solutions. For example, in products with high order variability, it is possible to generate solutions within an average gap of less than ±8.8% from the multi-objective optimization solutions. The findings of this research leads to the following primary recommendations: Orders should be picked based on the expiration dates of the batches (FEFO principle) unless, the amount of inventory in the location is exactly equal to the order amount. In that case, regardless of the expiration date and the traveled distance to the location, it is better to pick from that location and make the space available. If product replenishment is not instantaneous, regardless of the expiration date and the traveled distance to the location, it is recommended to not pick from a location which can lead to an undesired and low amount of inventory. Due to order variability of the product, it is better to wait until the inventory in that location transfers to a desirable level. If fast replenishment of products is obtainable, then prioritizing traveled distance over the objectives linked to space usage and inventory is advisable

    A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling

    Get PDF
    We propose an efficient evolutionary multi-objective optimization approach to the capacitated facility location–allocation problem (CFLP) for solving large instances that considers flexibility at the allocation level, where financial costs and CO2 emissions are considered simultaneously. Our approach utilizes suitably adapted Lagrangian Relaxation models for dealing with costs and CO2 emissions at the allocation level, within a multi-objective evolutionary framework at the location level. Thus our method assesses the robustness of each location solution with respect to our two objectives for customer allocation. We extend our exploration of selected solutions by considering a range of trade-offs for customer allocation

    Evolutionary computing for routing and scheduling applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis
    • 

    corecore